Schistosomiasis mansoni: a new therapeutic target for ubiquinol, a natural inhibitor of neutral magnesium-dependent sphingomyelinase in murine model.

Acta Tropica ◽  
2021 ◽  
pp. 106231
Author(s):  
Eglal I. Amer ◽  
Mervat Z. El-Azzouni ◽  
Rana T. El-Bannan, ◽  
Thanaa I. Shalaby ◽  
Samar N. El-Achy ◽  
...  
2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A788-A788
Author(s):  
Xiuning Le ◽  
Minghao Dang ◽  
Venkatesh Hegde ◽  
Bo Jiang ◽  
Ravaen Slay ◽  
...  

BackgroundHuman papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HPV+ HNSCC) is a disease that has moderate response to anti-PD-1/L1 immune checkpoint blockade, with the response rates less than 20% and median progression-free survival less than 3 months. A greater understanding of tumor intrinsic and extrinsic factors that restrict anti-tumor immunity in the tumor immune microenvironment (TIME) is needed to identify other immune checkpoints to enhance therapeutic efficacy.MethodsTwo cohorts (TCGA n=72 and a separate cohort n=84) of surgically resected, treatment-naïve HPV+ HNSCC with RNA-seq were analyzed to understand the immune features. In addition, single-cell RNA-seq and TCR-seq were performed on 18 cases to further delineate the immune molecules' interactions. An immune-competent murine HPV+ HNSCC model was used to preliminarily evaluate the therapeutic efficacy.ResultsIn two bulk-sequenced HPV+ HNSCC cohorts, TIGIT ligands PVR and NECTIN2 were found to associate with an epithelial-to-mesenchymal gene expression signature, suppression of IFNα and IFNγ signaling, a stromal-enriched or immune-excluded TIME, and poor survival. Single-cell RNA-seq of over 72,000 cells of HPV+ HNSCC revealed that the PVR/NECTIN ligand TIGIT was highly prevalent in T-cells (34%), significantly higher than PD1- (20%, p<0.01). There is an enrichment of cell-cell interactions mediated by TIGIT-PVR/NECTIN2 in the TIME of HPV+HNSCC versus normal tonsil. TIGIT was the most differentially upregulated immune checkpoint on clonally expanded CD8+T-cells and was abundant on antigen-experienced, tissue-resident memory CD8+T-cell and T-regulatory subsets. TIGIT ligands PVR, NECTIN1, and NECTIN2 were abundant on mature regulatory dendritic cells (DCs), immunosuppressive plasmacytoid (p)DCs, and macrophages, respectively. TIGIT and PD-1 co-blockade in the mEER syngeneic murine model significantly reduced tumor growth, improved survival, restored effector function of HPV16E7-specific CD8+T cells, natural killer cells, and DCs, and conferred tumor re-challenge protection.ConclusionsTIGIT-PVR/NECTIN receptors/ligands are more abundant than PD-1/L1 in the TIME of HPV+ HNSCC. Co-blockade of TIGIT and PD-1 immune checkpoints enhanced anti-tumor efficacy in a CD8+ T-cell-dependent manner and conferred long-term immune protection in a murine model. Our study nominates TIGIT as a therapeutic target for HPV+ HNSCC.


Blood ◽  
2018 ◽  
Vol 132 (21) ◽  
pp. 2286-2297 ◽  
Author(s):  
Irene Artuso ◽  
Maria Rosa Lidonnici ◽  
Sandro Altamura ◽  
Giacomo Mandelli ◽  
Mariateresa Pettinato ◽  
...  

Abstract β-thalassemias are genetic disorders characterized by anemia, ineffective erythropoiesis, and iron overload. Current treatment of severe cases is based on blood transfusion and iron chelation or allogeneic bone marrow (BM) transplantation. Novel approaches are explored for nontransfusion-dependent patients (thalassemia intermedia) who develop anemia and iron overload. Here, we investigated the erythropoietin (EPO) receptor partner, transferrin receptor 2 (TFR2), as a novel potential therapeutic target. We generated a murine model of thalassemia intermedia specifically lacking BM Tfr2: because their erythroid cells are more susceptible to EPO stimulation, mice show improved erythropoiesis and red blood cell morphology as well as partial correction of anemia and iron overload. The beneficial effects become attenuated over time, possibly due to insufficient iron availability to sustain the enhanced erythropoiesis. Germ line deletion of Tfr2, including haploinsufficiency, had a similar effect in the thalassemic model. Because targeting TFR2 enhances EPO-mediated effects exclusively in cells expressing both receptors, this approach may have advantages over erythropoiesis-stimulating agents in the treatment of other anemias.


Nanoscale ◽  
2021 ◽  
Author(s):  
Wojtek Lesniak ◽  
Yixuan Yu ◽  
Jeeun Kang ◽  
Srikanth Boinapally ◽  
Sangeeta Ray Banerjee ◽  
...  

Prostate-specific membrane antigen (PSMA) is a promising diagnostic and therapeutic target for prostate cancer (PC). Poly(amidoamine) [PAMAM] dendrimers serve as versatile scaffolds for imaging agents and drug delivery that can...


2003 ◽  
Vol 70 ◽  
pp. 213-220 ◽  
Author(s):  
Gerald Koelsch ◽  
Robert T. Turner ◽  
Lin Hong ◽  
Arun K. Ghosh ◽  
Jordan Tang

Mempasin 2, a ϐ-secretase, is the membrane-anchored aspartic protease that initiates the cleavage of amyloid precursor protein leading to the production of ϐ-amyloid and the onset of Alzheimer's disease. Thus memapsin 2 is a major therapeutic target for the development of inhibitor drugs for the disease. Many biochemical tools, such as the specificity and crystal structure, have been established and have led to the design of potent and relatively small transition-state inhibitors. Although developing a clinically viable mempasin 2 inhibitor remains challenging, progress to date renders hope that memapsin 2 inhibitors may ultimately be useful for therapeutic reduction of ϐ-amyloid.


Sign in / Sign up

Export Citation Format

Share Document