Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering

2007 ◽  
Vol 3 (4) ◽  
pp. 457-462 ◽  
Author(s):  
L HIDALGOBASTIDA ◽  
J BARRY ◽  
N EVERITT ◽  
F ROSE ◽  
L BUTTERY ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 451 ◽  
Author(s):  
Priyadharshni Muniyandi ◽  
Vivekanandan Palaninathan ◽  
Srivani Veeranarayanan ◽  
Tomofumi Ukai ◽  
Toru Maekawa ◽  
...  

Cardiac tissue engineering (CTE) aims to generate potential scaffolds to mimic extracellular matrix (ECM) for recreating the injured myocardium. Highly porous scaffolds with properties that aid cell adhesion, migration and proliferation are critical in CTE. In this study, electrospun porous poly (l-lactic acid) (PLLA) porous scaffolds were fabricated and modified with different ECM derived proteins such as collagen, gelatin, fibronectin and poly-L-lysine. Subsequently, adult human cardiac fibroblasts (AHCF) were cultured on the protein modified and unmodified fibers to study the cell behavior and guidance. Further, the cytotoxicity and reactive oxygen species (ROS) assessments of the respective fibers were performed to determine their biocompatibility. Excellent cell adhesion and proliferation of the cardiac fibroblasts was observed on the PLLA porous fibers regardless of the surface modifications. The metabolic rate of cells was on par with the conventional cell culture ware while the proliferation rate surpassed the latter by nearly two-folds. Proteome profiling revealed that apart from being an anchorage platform for cells, the surface topography has modulated significant expression of the cellular proteome with many crucial proteins responsible for cardiac fibroblast growth and proliferation.


2019 ◽  
Vol 30 (7) ◽  
pp. 1908612 ◽  
Author(s):  
Kaveh Roshanbinfar ◽  
Lena Vogt ◽  
Florian Ruther ◽  
Judith A. Roether ◽  
Aldo R. Boccaccini ◽  
...  

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 70
Author(s):  
Gozde Basara ◽  
S. Gulberk Ozcebe ◽  
Bradley W. Ellis ◽  
Pinar Zorlutuna

The generation of 3D tissue constructs with multiple cell types and matching mechanical properties remains a challenge in cardiac tissue engineering. Recently, 3D bioprinting has become a powerful tool to achieve these goals. Decellularized extracellular matrix (dECM) is a common scaffold material due to providing a native biochemical environment. Unfortunately, dECM’s low mechanical stability prevents usage for bioprinting applications alone. In this study, we developed bioinks composed of decellularized human heart ECM (dhECM) with either gelatin methacryloyl (GelMA) or GelMA-methacrylated hyaluronic acid (MeHA) hydrogels dual crosslinked with UV light and microbial transglutaminase (mTGase). We characterized the bioinks’ mechanical, rheological, swelling, printability, and biocompatibility properties. Composite GelMA–MeHA–dhECM (GME) hydrogels demonstrated improved mechanical properties by an order of magnitude compared to the GelMA–dhECM (GE) hydrogels. All hydrogels were extrudable and compatible with human induced pluripotent stem cell derived cardiomyocytes (iCMs) and human cardiac fibroblasts (hCFs). Tissue-like beating of the printed constructs with striated sarcomeric alpha-actinin and connexin 43 expression was observed. The order of magnitude difference between the elastic modulus of these hydrogel composites offers applications in in vitro modeling of the myocardial infarct boundary. Here, as a proof of concept, we created an infarct boundary region with control over the mechanical properties along with the cellular and macromolecular content through printing iCMs with GE bioink and hCFs with GME bioink.


2021 ◽  
Author(s):  
Gozde Basara ◽  
S. Gulberk Ozcebe ◽  
Bradley W. Ellis ◽  
Pinar Zorlutuna

AbstractThe generation of 3D tissue constructs with multiple cell types and matching mechanical properties remains a challenge in cardiac tissue engineering. Recently, 3D bioprinting has become a powerful tool to achieve these goals. Decellularized extracellular matrix (dECM) is a common scaffold material due to providing a native biochemical environment. Unfortunately, dECM’s low mechanical stability prevents usage for bioprinting applications alone. In this study, we developed bioinks composed of decellularized human heart ECM (dhECM) with either gelatin methacryloyl (GelMA) or GelMA- methacrylated hyaluronic acid (MeHA) hydrogels dual crosslinked with UV light and microbial Transglutaminase (mTGase). We characterized the bioinks’ mechanical, rheological, swelling, printability and biocompatibility properties. Composite GelMA-MeHA-dhECM (GME) hydrogels demonstrated improved mechanical properties by an order of magnitude, compared to GelMA-dhECM (GE) hydrogels. All hydrogels were extrudable and compatible with human induced pluripotent stem cells derived cardiomyocytes (iCMs) and human cardiac fibroblasts (hCFs). Tissue-like beating of the printed constructs with striated sarcomeric alpha-actinin and Connexin 43 expression was observed. The order of magnitude difference between the elastic modulus of these hydrogel composites offers applications in in vitro modelling of the myocardial infarct boundary. Here, as a proof of concept, we created an infarct boundary region with control over mechanical properties along with cellular and macromolecular content through printing iCMs with GE bioink and hCFs with GME bioink.


Author(s):  
Alex Savchenko ◽  
Rose T. Yin ◽  
Dmitry Kireev ◽  
Igor R. Efimov ◽  
Elena Molokanova

Cardiac tissue engineering requires materials that can faithfully recapitulate and support the native in vivo microenvironment while providing a seamless bioelectronic interface. Current limitations of cell scaffolds include the lack of electrical conductivity and suboptimal mechanical properties. Here we discuss how the incorporation of graphene into cellular scaffolds, either alone or in combination with other materials, can affect morphology, function, and maturation of cardiac cells. We conclude that graphene-based scaffolds hold great promise for cardiac tissue engineering.


2018 ◽  
Vol 6 (35) ◽  
pp. 5604-5612 ◽  
Author(s):  
Nadav Amdursky ◽  
Manuel M. Mazo ◽  
Michael R. Thomas ◽  
Eleanor J. Humphrey ◽  
Jennifer L. Puetzer ◽  
...  

The simplicity of making hydrogels with tunable mechanical properties from commercially available proteins is demonstrated for cardiac tissue engineering.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 914
Author(s):  
Arsalan Ul Haq ◽  
Felicia Carotenuto ◽  
Paolo Di Nardo ◽  
Roberto Francini ◽  
Paolo Prosposito ◽  
...  

Myocardial infarction (MI) is the consequence of coronary artery thrombosis resulting in ischemia and necrosis of the myocardium. As a result, billions of contractile cardiomyocytes are lost with poor innate regeneration capability. This degenerated tissue is replaced by collagen-rich fibrotic scar tissue as the usual body response to quickly repair the injury. The non-conductive nature of this tissue results in arrhythmias and asynchronous beating leading to total heart failure in the long run due to ventricular remodelling. Traditional pharmacological and assistive device approaches have failed to meet the utmost need for tissue regeneration to repair MI injuries. Engineered heart tissues (EHTs) seem promising alternatives, but their non-conductive nature could not resolve problems such as arrhythmias and asynchronous beating for long term in-vivo applications. The ability of nanotechnology to mimic the nano-bioarchitecture of the extracellular matrix and the potential of cardiac tissue engineering to engineer heart-like tissues makes it a unique combination to develop conductive constructs. Biomaterials blended with conductive nanomaterials could yield conductive constructs (referred to as extrinsically conductive). These cell-laden conductive constructs can alleviate cardiac functions when implanted in-vivo. A succinct review of the most promising applications of nanomaterials in cardiac tissue engineering to repair MI injuries is presented with a focus on extrinsically conductive nanomaterials.


2021 ◽  
pp. 100114
Author(s):  
Tilman U. Esser ◽  
Vanessa T. Trossmann ◽  
Sarah Lentz ◽  
Felix B. Engel ◽  
Thomas Scheibel

Sign in / Sign up

Export Citation Format

Share Document