scholarly journals 3D printed architected hollow sphere foams with low-frequency phononic band gaps

2019 ◽  
Vol 30 ◽  
pp. 100842 ◽  
Author(s):  
Olivia McGee ◽  
Huan Jiang ◽  
Feng Qian ◽  
Zian Jia ◽  
Lifeng Wang ◽  
...  
Author(s):  
Ying-Hong Liu ◽  
Chien C. Chang ◽  
Ruey-Lin Chern ◽  
C. Chung Chang

In this study, we investigate band structures of phononic crystals with particular emphasis on the effects of the mass density ratio and of the contrast of elastic constants. The phononic crystals consist of arrays of different media embedded in a rubber or epoxy. It is shown that the density ratio rather than the contrast of elastic constants is the dominant factor that opens up phononic band gaps. The physical background of this observation is explained by applying the theory of homogenization to investigate the group velocities of the low-frequency bands at the center of symmetry Γ.


2016 ◽  
Vol 113 (30) ◽  
pp. 8386-8390 ◽  
Author(s):  
Kathryn H. Matlack ◽  
Anton Bauhofer ◽  
Sebastian Krödel ◽  
Antonio Palermo ◽  
Chiara Daraio

Architected materials that control elastic wave propagation are essential in vibration mitigation and sound attenuation. Phononic crystals and acoustic metamaterials use band-gap engineering to forbid certain frequencies from propagating through a material. However, existing solutions are limited in the low-frequency regimes and in their bandwidth of operation because they require impractical sizes and masses. Here, we present a class of materials (labeled elastic metastructures) that supports the formation of wide and low-frequency band gaps, while simultaneously reducing their global mass. To achieve these properties, the metastructures combine local resonances with structural modes of a periodic architected lattice. Whereas the band gaps in these metastructures are induced by Bragg scattering mechanisms, their key feature is that the band-gap size and frequency range can be controlled and broadened through local resonances, which are linked to changes in the lattice geometry. We demonstrate these principles experimentally, using advanced additive manufacturing methods, and inform our designs using finite-element simulations. This design strategy has a broad range of applications, including control of structural vibrations, noise, and shock mitigation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmed Mehaney ◽  
Ashour M. Ahmed

Abstract In this work, a one-dimensional porous silicon carbide phononic crystal (1D-PSiC PnC) sandwiched between two rubber layers is introduced to obtain low frequency band gaps for the audible frequencies. The novelty of the proposed multilayer 1D-PnCs arises from the coupling between the soft rubber, unique mechanical properties of porous SiC materials and the local resonance phenomenon. The proposed structure could be considered as a 1D acoustic Metamaterial with a size smaller than the relevant 1D-PnC structures for the same frequencies. To the best of our knowledge, it is the first time to use PSiC materials in a 1D PnC structure for the problem of low frequency phononic band gaps. Also, the porosities and thicknesses of the PSiC layers were chosen to obtain the fundamental band gaps within the bandwidth of the acoustic transducers and sound suppression devices. The transmission spectrum of acoustic waves is calculated by using the transfer matrix method (TMM). The results revealed that surprising low band gaps appeared in the transmission spectra of the 1D-PSiC PnC at the audible range, which are lower than the expected ones by Bragg’s scattering theory. The frequency at the center of the first band gap was at the value 7957 Hz, which is 118 times smaller than the relevant frequency of other 1D structures with the same thickness. A comparison between the phononic band gaps of binary and ternary 1D-PSiC PnC structures sandwiched between two rubber layers at the micro-scale was performed and discussed. Also, the band gap frequency is controlled by varying the layers porosity, number and the thickness of each layer. The simulated results are promising in many applications such as low frequency band gaps, sound suppression devices, switches and filters.


2013 ◽  
Vol 114 (3) ◽  
pp. 033532 ◽  
Author(s):  
Zhibao Cheng ◽  
Zhifei Shi ◽  
Y. L. Mo ◽  
Hongjun Xiang

2007 ◽  
Vol 362 (5-6) ◽  
pp. 494-499 ◽  
Author(s):  
Yuanwei Yao ◽  
Zhilin Hou ◽  
Youyan Liu

2018 ◽  
Vol 52 (4) ◽  
pp. 045601 ◽  
Author(s):  
Chengxin Cai ◽  
Chao Han ◽  
Jianfeng Wu ◽  
Zhaohong Wang ◽  
Qinghui Zhang

Sign in / Sign up

Export Citation Format

Share Document