scholarly journals Composite 3D-printed metastructures for low-frequency and broadband vibration absorption

2016 ◽  
Vol 113 (30) ◽  
pp. 8386-8390 ◽  
Author(s):  
Kathryn H. Matlack ◽  
Anton Bauhofer ◽  
Sebastian Krödel ◽  
Antonio Palermo ◽  
Chiara Daraio

Architected materials that control elastic wave propagation are essential in vibration mitigation and sound attenuation. Phononic crystals and acoustic metamaterials use band-gap engineering to forbid certain frequencies from propagating through a material. However, existing solutions are limited in the low-frequency regimes and in their bandwidth of operation because they require impractical sizes and masses. Here, we present a class of materials (labeled elastic metastructures) that supports the formation of wide and low-frequency band gaps, while simultaneously reducing their global mass. To achieve these properties, the metastructures combine local resonances with structural modes of a periodic architected lattice. Whereas the band gaps in these metastructures are induced by Bragg scattering mechanisms, their key feature is that the band-gap size and frequency range can be controlled and broadened through local resonances, which are linked to changes in the lattice geometry. We demonstrate these principles experimentally, using advanced additive manufacturing methods, and inform our designs using finite-element simulations. This design strategy has a broad range of applications, including control of structural vibrations, noise, and shock mitigation.

2016 ◽  
Vol 30 (23) ◽  
pp. 1650317
Author(s):  
Chuanhui Yang ◽  
Jiu Hui Wu ◽  
Songhua Cao ◽  
Li Jing

This paper studies a novel kind of low-frequency broadband acoustic metamaterials with small size based on the mechanisms of negative mass density and multi-cavity coupling. The structure consists of a closed resonant cavity and an open resonant cavity, which can be equivalent to a homogeneous medium with effective negative mass density in a certain frequency range by using the parameter inversion method. The negative mass density makes the anti-resonance area increased, which results in broadened band gaps greatly. Owing to the multi-cavity coupling mechanism, the local resonances of the lower frequency mainly occur in the closed cavity, while the local resonances of the higher frequency mainly in the open cavity. Upon the interaction between the negative mass density and the multi-cavity coupling, there exists two broad band gaps in the range of 0–1800 Hz, i.e. the first-order band gap from 195 Hz to 660 Hz with the bandwidth of 465 Hz and the second-order band gap from 1157 Hz to 1663 Hz with the bandwidth of 506 Hz. The acoustic metamaterials with small size presented in this paper could provide a new approach to reduce the low-frequency broadband noises.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3812 ◽  
Author(s):  
Heng Jiang ◽  
Mangong Zhang ◽  
Yu Liu ◽  
Dongliang Pei ◽  
Meng Chen ◽  
...  

Elastic metamaterials have promising applications in wave control and vibration isolation, due to their extraordinary characteristics, e.g., negative Poisson ratio, band gaps, effective negative mass density and effective negative modulus. How to develop new functional metamaterials using a special structure has always been a hot topic in this field. In this study, a three-dimensional (3D) star structure is designed to construct metamaterials with both negative static and dynamic properties. The results show that the 3D star structure formed a wide band gap at lower frequency and had a negative Poisson’s ratio. Different from conventional acoustic metamaterials, the main physical mechanism behind the low-frequency band gap of the 3D star structure is the resonance mode formed by the bending deformation of each rib plate, which made it easier to achieve effective isolation of low-frequency elastic waves with a low mass density. In addition, many structural parameters of the 3D star structure can be modulated to effectively adjust the band gap frequency by changing the angle between the concave nodes and aspect ratio. This study provides a new way to design the 3D acoustic metamaterials and develop the lightweight vibration isolation devices.


2019 ◽  
Vol 86 (1) ◽  
pp. 10901 ◽  
Author(s):  
Hongxing Liu ◽  
Jiu Hui Wu

In this paper, viscoelastic multi-resonator mechanism for broadening low-frequency band-gaps of acoustic metamaterials is investigated. Firstly, the metamaterial unit consists of dual-mass and dual-viscoelasticity is proposed which can generate multiple resonances to form multiple band-gaps, and further the broadened band-gaps are realized by modulating the effect of the viscoelasticity. Secondly, for the dual-viscoelasticity, the band-gaps and transmission spectrum under the cases of with the consistent and inconsistent viscoelasticity are calculated. Comparing with the consistent case, by adjusting the viscoelasticity in the inconsistent case, the storage modulus changes the fastest and obtains a smaller and a larger elastic modulus at the corresponding starting frequency and ending frequency of the band-gap, in which the band-gap can be broadened and shifted to the low frequency since the resonant frequency is determined by the elastic modulus, and for the loss modulus, it has little effects on the width of the band-gap, but has great influence on the transmission coefficient. Thirdly, by adjusting the inconsistent viscoelastic parameters based on the above rules, the band width is increased by 1.7 times (1.3 times for the absolute band width) than the consistent structure and the band-gap is shifted to the low frequency by 31% (about 345 Hz). The viscoelastic multi-resonator mechanism can be used to practical applications of viscoelastic metamaterials.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
M. Nouh ◽  
O. Aldraihem ◽  
A. Baz

Vibration characteristics of metamaterial beams manufactured of assemblies of periodic cells with built-in local resonances are presented. Each cell consists of a base structure provided with cavities filled by a viscoelastic membrane that supports a small mass to form a source of local resonance. This class of metamaterial structures exhibits unique band gap behavior extending to very low-frequency ranges. A finite element model (FEM) is developed to predict the modal, frequency response, and band gap characteristics of different configurations of the metamaterial beams. The model is exercised to demonstrate the band gap and mechanical filtering capabilities of this class of metamaterial beams. The predictions of the FEM are validated experimentally when the beams are subjected to excitations ranging between 10 and 5000 Hz. It is observed that there is excellent agreement between the theoretical predictions and the experimental results for plain beams, beams with cavities, and beams with cavities provided with local resonant sources. The obtained results emphasize the potential of the metamaterial beams for providing significant vibration attenuation and exhibiting band gaps extending to low frequencies. Such characteristics indicate that metamaterial beams are more effective in attenuating and filtering low-frequency structural vibrations than plain periodic beams of similar size and weight.


2018 ◽  
Vol 29 (13) ◽  
pp. 2744-2753 ◽  
Author(s):  
Shengbing Chen

Cross-shape piezoelectric patches were originally proposed to improve the band-gap properties of acoustic metamaterials with shunting circuits. The dispersion curves are characterized through the application of finite element method. Also, the theoretical band-gap predictions are verified by simulation results obtained from COMSOL. The investigation results show that the proposed scheme distinguishes itself from the conventional square patches by broader band gaps, whose bandwidth is almost doubled. The inherent capacitance of the piezoelectric patch is strongly related to the boundary conditions, so the local resonant band gap is strongly affected by the shape of piezoelectric patches as well. As a result, the band-gap width and location of metamaterials with different shape patches are rather different, even with the same size patches. Also, negative modulus (NM) and Poisson’s ratio were observed around the resonant frequencies. The transmission properties of finite periods agree well with band-gap predictions. An obvious attenuation zone (AZ) is produced around the band-gap location, in which the wave propagation is decayed strongly. Similarly, the width of AZ of the proposed metamaterial is much larger than that of the conventional one. Hence, the proposed scheme demonstrates more advantages in the application to vibration isolation when compared with the conventional.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Y. Y. Chen ◽  
G. L. Huang ◽  
C. T. Sun

Elastic metamaterials have been extensively investigated due to their significant effects on controlling propagation of elastic waves. One of the most interesting properties is the generation of band gaps, in which subwavelength elastic waves cannot propagate through. In the study, a new class of active elastic metamaterials with negative capacitance piezoelectric shunting is presented. We first investigated dispersion curves and band gap control of an active mass-in-mass lattice system. The unit cell of the mass-in-mass lattice system consists of the inner masses connected by active linear springs to represent negative capacitance piezoelectric shunting. It was demonstrated that the band gaps can be actively controlled and tuned by varying effective stiffness constant of the linear spring through appropriately selecting the value of negative capacitance. The promising application was then demonstrated in the active elastic metamaterial plate integrated with the negative capacitance shunted piezoelectric patches for band gap control of both the longitudinal and bending waves. It can be found that the location and the extent of the induced band gap of the elastic metamaterial can be effectively tuned by using shunted piezoelectric patch with different values of negative capacitance, especially for extremely low-frequency cases.


2021 ◽  
pp. 1-34
Author(s):  
Shaowu Ning ◽  
Dongyang Chu ◽  
Fengyuan Yang ◽  
Heng Jiang ◽  
Zhanli Liu ◽  
...  

Abstract The characteristics of passive responses and fixed band gaps of phononic crystals (PnCs) limit their possible applications. For overcoming this shortcoming, a class of tunable PnCs comprised of multiple scatterers and soft periodic porous elastomeric matrices are designed to manipulate the band structures and directionality of wave propagation through the applied deformation. During deformation, some tunable factors such as the coupling effect of scatterer and hole in the matrix, geometric and material nonlinearities, and the rearrangement of scatterer are activated by deformation to tune the dynamic responses of PnCs. The roles of these tunable factors in the manipulation of dynamic responses of PnCs are investigated in detail. The numerical results indicate that the tunability of the dynamic characteristic of PnCs is the result of the comprehensive function of these tunable factors mentioned above. The strong coupling effect between the hole in the matrix and the scatterer contributes to the formation of band gaps. The geometric nonlinearity of matrix and rearrangement of scatterer induced by deformation can simultaneously tune the band gaps and the directionality of wave propagation. However, the matrix's material nonlinearity only adjusts the band gaps of PnCs and does not affect the directionality of wave propagation in them. The research extends our understanding of the formation mechanism of band gaps of PnCs and provides an excellent opportunity for the design of the optimized tunable PnCs and acoustic metamaterials.


2020 ◽  
Vol 35 ◽  
pp. 100623 ◽  
Author(s):  
Shaowu Ning ◽  
Fengyuan Yang ◽  
Chengcheng Luo ◽  
Zhanli Liu ◽  
Zhuo Zhuang

2010 ◽  
Vol 24 (25n26) ◽  
pp. 4935-4945 ◽  
Author(s):  
D. P. ELFORD ◽  
L. CHALMERS ◽  
F. KUSMARTSEV ◽  
G. M. SWALLOWE

We present several new classes of metamaterials and/or locally resonant sonic crystal that are comprised of complex resonators. The proposed systems consist of multiple resonating inclusion that correspond to different excitation frequencies. This causes the formation of multiple overlapped resonance band gaps. We demonstrate theoretically and experimentally that the individual band gaps achieved, span a far greater range (≈ 2kHz) than previously reported cases. The position and width of the band gap is independent of the crystal's lattice constant and forms in the low frequency regime significantly below the conventional Bragg band gap. The broad envelope of individual resonance band gaps is attractive for sound proofing applications and furthermore the devices can be tailored to attenuate lower or higher frequency ranges, i.e., from seismic to ultrasonic.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chao Li ◽  
Sifeng Zhang ◽  
Liyong Gao ◽  
Wei Huang ◽  
Zhaoxin Liu

Locally resonant phononic crystals (LRPCs) beam is characterized by the band gaps; some frequency ranges within which flexural waves cannot propagate freely. So, the LRPCs beam can be used for noise or vibration isolation. In this paper, a LRPCs beam with distributed oscillators is proposed, and the general formula of band gaps and transmission spectrum are derived by the transfer matrix method (TMM) and spectrum element method (SEM). Subsequently, the parameter effects on band gaps are investigated in detail. Finally, a rubber concrete beam is designed to demonstrate the application of distributed LRPCs beam in civil engineering. Results reveal that the distributed LRPCs beam has multifrequency band gaps and the number of the band gaps is equal to that of the oscillators. Compared with others, the distributed LRPCs beam can reduce the stress concentration when subjected to vibration. The oscillator interval has no effect on the band gaps, which makes it more convenient to design structures. Individual changes of oscillator mass or stiffness affect the band gap location and width. When the resonance frequency of oscillator is fixed, the starting frequency of the band gap remains constant, and increasing oscillator mass of high-frequency band gap widens the high-frequency band gap, while increasing oscillator mass of low-frequency gap widens both high-frequency and low-frequency band gaps. External loads, such as the common uniform spring force provided by foundation in civil engineering, are conducive to the band gap, and when the spring force increases, all the band gaps are widened. Taken together, a configuration of LRPCs rubber concrete beam is designed, and it shows good isolation on the vibration induced by the railway. By the presented design flow chart, the research can serve as a reference for vibration isolation of LRPCs beams in civil engineering.


Sign in / Sign up

Export Citation Format

Share Document