Prediction of melt pool temperature in directed energy deposition using machine learning

2020 ◽  
pp. 101692
Author(s):  
Ziyang Zhang ◽  
Zhichao Liu ◽  
Dazhong Wu
Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 634
Author(s):  
Agnieszka Kisielewicz ◽  
Karthikeyan Thalavai Pandian ◽  
Daniel Sthen ◽  
Petter Hagqvist ◽  
Maria Asuncion Valiente Bermejo ◽  
...  

This study investigates the influence of resistive pre-heating of the feedstock wire (here called hot-wire) on the stability of laser-directed energy deposition of Duplex stainless steel. Data acquired online during depositions as well as metallographic investigations revealed the process characteristic and its stability window. The online data, such as electrical signals in the pre-heating circuit and images captured from side-view of the process interaction zone gave insight on the metal transfer between the molten wire and the melt pool. The results show that the characteristics of the process, like laser-wire and wire-melt pool interaction, vary depending on the level of the wire pre-heating. In addition, application of two independent energy sources, laser beam and electrical power, allows fine-tuning of the heat input and increases penetration depth, with little influence on the height and width of the beads. This allows for better process stability as well as elimination of lack of fusion defects. Electrical signals measured in the hot-wire circuit indicate the process stability such that the resistive pre-heating can be used for in-process monitoring. The conclusion is that the resistive pre-heating gives additional means for controlling the stability and the heat input of the laser-directed energy deposition.


2021 ◽  
Vol 53 ◽  
pp. 576-584
Author(s):  
Kandice S.B. Ribeiro ◽  
Henrique H.L. Núñez ◽  
Jason B. Jones ◽  
Peter Coates ◽  
Reginaldo T. Coelho

2021 ◽  
Vol 53 ◽  
pp. 407-416
Author(s):  
Chaitanya Vundru ◽  
Ramesh Singh ◽  
Wenyi Yan ◽  
Shyamprasad Karagadde

Author(s):  
Basil Paudel ◽  
Garrett Marshall ◽  
Scott M. Thompson

Abstract The effects of Ti-6Al-4V part size on its temperature distribution during the blown-powder directed energy deposition (DED) process was investigated through dual-thermographic monitoring and a unique modeling technique. Results demonstrate that the duration of dwell times presented to be a significant contributing factor affecting the rate at which a steady-state temperature field is achieved. As a result, the longer wall took significantly more layers/time to achieve a uniform temperature profile within the wall. Maximum and average melt pool temperatures appear to be near independent of part size at a steady state. Finite element simulation results showed that a quasi-steady melt pool temperature may be unique to a layer, especially during earlier cladding process near the substrate and that the layer-wise steady melt pool was achieved within the first few seconds of track scanning. A proposed fin modeling-based temperature distribution was found to predict the thermal profile in a ‘substrate affected zone’ (SAZ) along the scan direction within 5%. A method to predict the onset of the SAZ has also been proposed. Process parameters used for the DED of component volumes are not necessarily optimal for thin-walled structures due to significantly less thermal capacity.


2019 ◽  
Vol 62 (4) ◽  
pp. 213-217 ◽  
Author(s):  
Abdollah Saboori ◽  
Sara Biamino ◽  
Mariangela Lombardi ◽  
Simona Tusacciu ◽  
Mattia Busatto ◽  
...  

Author(s):  
Jianyi Li ◽  
Qian Wang ◽  
Panagiotis (Pan) Michaleris ◽  
Edward W. Reutzel ◽  
Abdalla R. Nassar

There is a need for the development of lumped-parameter models that can be used for real-time control design and optimization for laser-based additive manufacturing (AM) processes. Our prior work developed a physics-based multivariable model for melt–pool geometry and temperature dynamics in a single-bead deposition for a directed energy deposition process and then validated the model using experimental data from deposition of single-bead Ti–6AL–4V (or Inconel®718) tracks on an Optomec® Laser Engineering Net Shaping (LENS™) system. In this paper, we extend such model for melt–pool geometry in a single-bead deposition to a multibead multilayer deposition and then use the extended model on melt–pool height dynamics to predict part height of a three-dimensional build. Specifically, the extended model incorporates temperature history during the build process, which is approximated by super-positioning the temperature fields generated from Rosenthal's solution of point heat sources, with one heat source corresponding to one bead built before. The proposed model for part height prediction is then validated using builds with a variety of shapes, including single-bead thin wall structures, a patch build, and L-shaped structures, all built with Ti–6AL–4V using an Optomec® LENSTM MR-7 system. The model predictions on average part height show reasonable agreement with the measured average part height, with error rate less than 15%.


Author(s):  
Basil J. Paudel ◽  
Garrett J. Marshall ◽  
Scott M. Thompson

Abstract The effects of Ti-6Al-4V part size on its temperature distribution during the blown-powder directed energy deposition-laser (DED-L) process was investigated through dual-thermographic monitoring and a unique modeling technique. Results demonstrate that the duration of dwell times are a significant contributing factor affecting the rate at which a steady-state temperature field is achieved. Longer walls took significantly more layers/time to achieve a uniform temperature profile. Maximum and average melt pool temperatures appear to be near independent of part size at a steady state. Finite element simulation results show that a quasi-steady melt pool temperature may be unique to a layer, especially for layers near the substrate. Layer-wise steady melt pool temperatures were achieved within the first few seconds of track scanning. A proposed fin modeling-based temperature distribution was found to predict the thermal profile in a ‘substrate affected zone’ (SAZ) along the scan direction within 5%. A method to predict the onset of the SAZ has also been proposed. Process parameters used for the DED-L of component volumes are not necessarily optimal for thin-walled structures due to their significantly lower thermal capacity.


Sign in / Sign up

Export Citation Format

Share Document