scholarly journals Effect of extrusion and fused filament fabrication processing parameters of recycled poly(ethylene terephthalate) on the crystallinity and mechanical properties

2021 ◽  
pp. 102518
Author(s):  
Babs Van de Voorde ◽  
Amalia Katalagarianakis ◽  
Sofie Huysman ◽  
Antoniya Toncheva ◽  
Jean-Marie Raquez ◽  
...  
Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2041 ◽  
Author(s):  
Hao Gu ◽  
Fayez AlFayez ◽  
Toseef Ahmed ◽  
Zahir Bashir

The 3D printing of articles by the effect of a directed laser beam on a plastic powder is a demanding process, and unlike injection molding, very few polymers work well enough with it. Recently, we reported that poly(ethylene terephthalate) (PET) powder has intrinsically good properties for 3D printing. Basic mechanical properties were shown earlier and it was demonstrated that unfused but heat-exposed PET powder does not degrade quickly allowing good re-use potential. In this work, we conducted a detailed comparison of the mechanical properties of PET and polyamide 12 from different build orientations. PET powders with two different molecular weights were used. With the high molecular weight powder, the processing parameters were optimized, and the printed bars showed little difference between the different orientations, which means there is low anisotropy in mechanical properties of built parts. Based on processing experience of the first powder, the second powder with a lower molecular weight was also very printable and complex parts were made with ease from the initial printing trials; since the process parameters were not optimized then, lower mechanical properties were obtained. While the intrinsic material properties of PET (melting and re-crystallization kinetics) are not the best for injection molding, PET is eminently suitable for powder bed fusion.


RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 37139-37147 ◽  
Author(s):  
Diran Wang ◽  
Faliang Luo ◽  
Zhiyuan Shen ◽  
Xuejian Wu ◽  
Yaping Qi

In order to overcome low crystallization rate of PET, HPN-68L was selected to replace the special nucleate agent of PET to improve PET crystallization for its carboxylate anion structure which usually showed high induced nucleation ability for PET.


Sign in / Sign up

Export Citation Format

Share Document