Clinical translation of advanced colonic drug delivery technologies

2021 ◽  
pp. 114076
Author(s):  
Atheer Awad ◽  
Christine M. Madla ◽  
Laura E. McCoubrey ◽  
Fabiana Ferraro ◽  
Francesca K.H. Gavins ◽  
...  
Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Manoj Kumar Mahata ◽  
Ranjit De ◽  
Kang Taek Lee

Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.


2004 ◽  
Vol 20 (3) ◽  
pp. 347-353 ◽  
Author(s):  
C. Bott ◽  
M. W. Rudolph ◽  
A. R. J. Schneider ◽  
S. Schirrmacher ◽  
B. Skalsky ◽  
...  

Nanomedicine ◽  
2021 ◽  
Author(s):  
Swati Biswas

Tweetable abstract Micelles are nanocarriers for hydrophobic chemotherapeutic drugs. This editorial discusses the current status of preclinical micellar research and sheds light on the possibility of their clinical translation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Josanne S. de Maar ◽  
Charis Rousou ◽  
Benjamin van Elburg ◽  
Hendrik J. Vos ◽  
Guillaume P.R. Lajoinie ◽  
...  

Chemotherapy efficacy is often reduced by insufficient drug uptake in tumor cells. The combination of ultrasound and microbubbles (USMB) has been shown to improve drug delivery and to enhance the efficacy of several drugs in vitro and in vivo, through effects collectively known as sonopermeation. However, clinical translation of USMB therapy is hampered by the large variety of (non-clinical) US set-ups and US parameters that are used in these studies, which are not easily translated to clinical practice. In order to facilitate clinical translation, the aim of this study was to prove that USMB therapy using a clinical ultrasound system (Philips iU22) in combination with clinically approved microbubbles (SonoVue) leads to efficient in vitro sonopermeation. To this end, we measured the efficacy of USMB therapy for different US probes (S5-1, C5-1 and C9-4) and US parameters in FaDu cells. The US probe with the lowest central frequency (i.e. 1.6 MHz for S5-1) showed the highest USMB-induced intracellular uptake of the fluorescent dye SYTOX™ Green (SG). These SG uptake levels were comparable to or even higher than those obtained with a custom-built US system with optimized US parameters. Moreover, USMB therapy with both the clinical and the custom-built US system increased the cytotoxicity of the hydrophilic drug bleomycin. Our results demonstrate that a clinical US system can be used to perform USMB therapy as efficiently as a single-element transducer set-up with optimized US parameters. Therefore, future trials could be based on these clinical US systems, including validated US parameters, in order to accelerate successful translation of USMB therapy.


1998 ◽  
Vol 52 (1-2) ◽  
pp. 109-118 ◽  
Author(s):  
M.L Lorenzo-Lamosa ◽  
C Remuñán-López ◽  
J.L Vila-Jato ◽  
M.J Alonso

2018 ◽  
Vol 6 (18) ◽  
pp. 2758-2768 ◽  
Author(s):  
Hongzhao Qi ◽  
Lijun Yang ◽  
Xueping Li ◽  
Qi Zhan ◽  
Donglin Han ◽  
...  

A new exosome-related drug delivery vehicle was explored based on the “STOP” criteria, dramatically promoting the clinical translation of exosomes.


Sign in / Sign up

Export Citation Format

Share Document