targeted drug delivery
Recently Published Documents


TOTAL DOCUMENTS

2727
(FIVE YEARS 866)

H-INDEX

119
(FIVE YEARS 22)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 178
Author(s):  
Joanna Kopecka

Mitochondria, organelles surrounded by a double membrane and with their own small genome, are the cells’ energy centres [...]


2022 ◽  
Vol 8 ◽  
Author(s):  
Lihong Gu ◽  
Feng Zhang ◽  
Jinhui Wu ◽  
Yuzheng Zhuge

Liver fibrosis is a reversible disease course caused by various liver injury etiologies, and it can lead to severe complications, such as liver cirrhosis, liver failure, and even liver cancer. Traditional pharmacotherapy has several limitations, such as inadequate therapeutic effect and side effects. Nanotechnology in drug delivery for liver fibrosis has exhibited great potential. Nanomedicine improves the internalization and penetration, which facilitates targeted drug delivery, combination therapy, and theranostics. Here, we focus on new targets and new mechanisms in liver fibrosis, as well as recent designs and development work of nanotechnology in delivery systems for liver fibrosis treatment.


2022 ◽  
Vol 3 ◽  
Author(s):  
Teresita Arredondo-Ochoa ◽  
Guillermo A. Silva-Martínez

Most of the active pharmaceutical compounds are often prone to display low bioavailability and biological degradation represents an important drawback. Due to the above, the development of a drug delivery system (DDS) that enables the introduction of a pharmaceutical compound through the body to achieve a therapeutic effect in a controlled manner is an expanding application. Henceforth, new strategies have been developed to control several parameters considered essential for enhancing delivery of drugs. Nanostructure synthesis by microemulsions (ME) consist of enclosing a substance within a wall material at the nanoscale level, allowing to control the size and surface area of the resulting particle. This nanotechnology has shown the importance on targeted drug delivery to improve their stability by protecting a bioactive compound from an adverse environment, enhanced bioavailability as well as controlled release. Thus, a lower dose administration could be achieved by minimizing systemic side effects and decreasing toxicity. This review will focus on describing the different biocompatible nanostructures synthesized by ME as controlled DDS for therapeutic purposes.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaolan Wu ◽  
Shanshan Jin ◽  
Chengye Ding ◽  
Yu Wang ◽  
Danqing He ◽  
...  

Microbial diseases are a global health threat, leading to tremendous casualties and economic losses. The strategy to treat microbial diseases falls into two broad categories: pathogen-directed therapy (PDT) and host-directed therapy (HDT). As the typical PDT, antibiotics or antiviral drugs directly attack bacteria or viruses through discerning specific molecules. However, drug abuse could result in antimicrobial resistance and increase infectious disease morbidity. Recently, the exosome therapy, as a HDT, has attracted extensive attentions for its potential in limiting infectious complications and targeted drug delivery. Mesenchymal stem cell-derived exosomes (MSC-Exos) are the most broadly investigated. In this review, we mainly focus on the development and recent advances of the application of MSC-Exos on microbial diseases. The review starts with the difficulties and current strategies in antimicrobial treatments, followed by a comprehensive overview of exosomes in aspect of isolation, identification, contents, and applications. Then, the underlying mechanisms of the MSC-Exo therapy in microbial diseases are discussed in depth, mainly including immunomodulation, repression of excessive inflammation, and promotion of tissue regeneration. In addition, we highlight the latest progress in the clinical translation of the MSC-Exo therapy, by summarizing related clinical trials, routes of administration, and exosome modifications. This review will provide fundamental insights and future perspectives on MSC-Exo therapy in microbial diseases from bench to bedside.


2022 ◽  
Author(s):  
Nafeesa Khatoon ◽  
Zefei Zhang ◽  
Chunhui Zhou ◽  
Maoquan Chu

The enhanced and targeted drug delivery with low systemic toxicity and subsequent release of drugs is the major concern among researchers and pharmaceutics. Inspite of greater advancement and discoveries in...


Theranostics ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1132-1147
Author(s):  
Zhiyuan Sun ◽  
Qiqi Liu ◽  
Xinyue Wang ◽  
Jin Wu ◽  
Xueyan Hu ◽  
...  

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 261
Author(s):  
Madeeha Shahzad Lodhi ◽  
Fatima Khalid ◽  
Muhammad Tahir Khan ◽  
Zahoor Qadir Samra ◽  
Shabbir Muhammad ◽  
...  

Therapeutic effects of anticancer medicines can be improved by targeting the specific receptors on cancer cells. Folate receptor (FR) targeting with antibody (Ab) is an effective tool to deliver anticancer drugs to the cancer cell. In this research project, a novel formulation of targeting drug delivery was designed, and its anticancer effects were analyzed. Folic acid-conjugated magnetic nanoparticles (MNPs) were used for the purification of folate receptors through a novel magnetic affinity purification method. Antibodies against the folate receptors and methotrexate (MTX) were developed and characterized with enzyme-linked immunosorbent assay and Western blot. Targeting nanomedicines (MNP-MTX-FR Ab) were synthesized by engineering the MNP with methotrexate and anti-folate receptor antibody (anti-FR Ab). The cytotoxicity of nanomedicines on HeLa cells was analyzed by calculating the % age cell viability. A fluorescent study was performed with HeLa cells and tumor tissue sections to analyze the binding efficacy and intracellular tracking of synthesized nanomedicines. MNP-MTX-FR Ab demonstrated good cytotoxicity along all the nanocomposites, which confirms that the antibody-coated medicine possesses the potential affinity to destroy cancer cells in the targeted drug delivery process. Immunohistochemical approaches and fluorescent study further confirmed their uptake by FRs on the tumor cells’ surface in antibody-mediated endocytosis. The current approach is a useful addition to targeted drug delivery for better management of cancer therapy along with immunotherapy in the future.


2022 ◽  
Vol 11 (1) ◽  
pp. 372-413
Author(s):  
Mohamed Ibrahim Ahmed Abdel Maksoud ◽  
Mohamed Mohamady Ghobashy ◽  
Ahmad S. Kodous ◽  
Ramy Amer Fahim ◽  
Ahmed I. Osman ◽  
...  

Abstract Magnetic spinel ferrite nanoparticles (SFNPs) attract high scientific attention from researchers due to their broad area for biomedicine applications, comprising cancer magnetic hyperthermia and targeted drug delivery. Uniquely, its excellent performance, namely, tuning size and surface morphology, excellent magnetism, extraordinary magnetically heat induction, promising biocompatibility, and specific targeting capacity, is essential for their effective utilization in clinical diagnosis and therapeutics of diseases. This review emphasizes the anticancer properties of nanoparticles of spinel ferrites with extra focus on the most recent literature. A critical review is provided on the latest applications of SFNPs in cancer therapy. Based on the results obtained from this review, SFNPs have the indefinite ability in cancer therapy through two mechanisms: (1) hyperthermia, where SFNPs, used as a hyperthermia mediator, elevated the tumor cells heat post-exposure to an external magnetic field and radiosensitizer during cancer radiotherapy; and (2) targeted drug delivery of cytotoxic drugs in tumor treatment. SFNPs induced apoptosis and cell death of cancer cells and prevented cancer cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document