An innovative semi-analytical determination approach to numerical loaded tooth contact analysis (NLTCA) for spiral bevel and hypoid gears

2020 ◽  
Vol 149 ◽  
pp. 102892
Author(s):  
Wei Qu ◽  
Han Ding ◽  
Jinyuan Tang
Author(s):  
Kaibin Rong ◽  
Han Ding ◽  
Biyun Song ◽  
Jinhao Gao ◽  
Jinyuan Tang

Data-driven process control considering both geometric and loaded contact performance evaluations has been an increasingly important stage in field of spiral bevel and hypoid gears. A new data-driven manufacturing process control strategy is proposed for a high performance spiral bevel and hypoid gears. Here, to distinguish with the conventional simulated loaded tooth contact analysis (SLTCA) using economical finite element software package, the numerical loaded tooth contact analysis (NLTCA) is of more flexibility and practicality. In light of the advantages of the improved design for six sigma (DFSS), it is integrated with NLTCA for establishing a novel data-driven process control of gear manufacturing. Firstly, in improved DFSS framework, quality function deployment (QFD) is used to determine four sub-objective high-performance evaluation items. Then, their data-driven relationships between machine settings are respectively determined by using NLTCA. In particular, the manufacturing process control is further converted into multi-objective optimization (MOO) modification of the hypoid generator settings. Finally, an interactive preference point approach is applied for data-driven control of its iterative step and it can obtain a robust solution from Pareto optimal front. A case study is provided to verify the proposed methodology.


Author(s):  
M. Kolivand ◽  
A. Kahraman

Manufacturing errors typically cause real (measured) spiral bevel and hypoid gear surfaces to deviate from the theoretical ones globally. Tooth surface wear patterns accumulated through the life span of the gear set are typically local deviations that are aggravated especially in case of edge contact conditions. An accurate and practical methodology based on ease-off topography is proposed in this study to perform loaded tooth contact analysis of spiral bevel and hypoid gears having both types of local and global deviations. It starts with definition of the theoretical pinion and gear tooth surfaces from the machine settings and cutter parameters, and constructs the theoretical ease-off and roll angle surfaces to compute unloaded contact analysis. Manufacturing errors and localized surface wear deviations are considered to update the theoretical ease-off to form a new ease-off surface that is used to perform a loaded tooth contact analysis according to the semi-analytical method proposed earlier. At the end, a numerical example with locally deviated surfaces is analyzed to demonstrate the effectiveness of the proposed methodology as well as quantifying the effect of such deviations on load distribution and the loaded motion transmission error.


2000 ◽  
Vol 122 (1) ◽  
pp. 109-122 ◽  
Author(s):  
Claude Gosselin ◽  
Thierry Guertin ◽  
Didier Remond ◽  
Yves Jean

The Transmission Error and Bearing Pattern of a gear set are fundamental aspects of its meshing behavior. To assess the validity of gear simulation models, the Transmission Error and Bearing Pattern of a Formate Hypoid gear set are measured under a variety of operating positions and applied loads. Measurement data are compared to simulation results of Tooth Contact Analysis and Loaded Tooth Contact Analysis models, and show excellent agreement for the considered test gear set. [S1050-0472(00)00901-6]


Author(s):  
Vilmos V. Simon

The method for loaded tooth contact analysis is applied for the investigation of the influence of misalignments and tooth errors on load distribution, stresses and transmission errors in mismatched spiral bevel gears. By using the corresponding computer program the influence of pinion’s offset and axial adjustment error, angular position error of the pinion axis and tooth spacing error on tooth contact pressure, tooth root stresses and angular displacement of the driven gear member from the theoretically exact position based on the ratio of the numbers of teeth is investigated. The obtained results have shown that in general, the misalignments in spiral bevel gears worsen the conjugation of contacting tooth surfaces and in extreme cases cause edge contact with high tooth contact pressures. But, some mismatches, as are the axial movement of the pinion apex towards the gear teeth or the tip relief of pinion teeth (in this analysis it is represented by the tooth spacing error) reduce the maximum tooth contact pressure. Also it can be concluded that the misalignments and the tooth spacing errors significantly increase the angular position error of the driven gear from the theoretically exact position based on the numbers of teeth and make the motion graphs unbalanced.


2013 ◽  
Vol 572 ◽  
pp. 351-354
Author(s):  
Simon Vilmos

In this study, an optimization methodology is proposed to systematically define head-cutter geometry and machine tool settings to introduce optimal tooth modifications in face-hobbed hypoid gears. The goal of the optimization is to simultaneously minimize tooth contact pressures and angular displacement error of the driven gear, while concurrently confining the loaded contact pattern within the tooth boundaries. The proposed optimization procedure relies heavily on a loaded tooth contact analysis for the prediction of tooth contact pressure distribution and transmission errors. The objective function and the constraints are not available analytically, but they are computable, i.e., they exist numerically through the loaded tooth contact analysis. The core algorithm of the proposed nonlinear programming procedure is based on a direct search method. Effectiveness of this optimization was demonstrated by using a face-hobbed hypoid gear example. Considerable reductions in the maximum tooth contact pressure and in the transmission errors were obtained.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
M. Kolivand ◽  
A. Kahraman

Actual hypoid gear tooth surfaces do deviate from the theoretical ones either globally due to manufacturing errors or locally due to reasons such as tooth surface wear. A practical methodology based on ease-off topography is proposed here for loaded tooth contact analysis of hypoid gears having both local and global deviations. This methodology defines the theoretical pinion and gear tooth surfaces from the machine settings and cutter parameters, and constructs the surfaces of the theoretical ease-off and roll angle to compute for the unloaded contact analysis. This theoretical ease-off topography is modified based on tooth surface deviations and is used to perform a loaded tooth contact analysis according to a semi-analytical method proposed earlier. At the end, two examples, a face-milled hypoid gear set having local deviations and a face-hobbed one having global deviations, are analyzed to demonstrate the effectiveness of the proposed methodology in quantifying the effect of such deviations on the load distribution and the loaded motion transmission error.


2022 ◽  
Vol 12 (2) ◽  
pp. 822
Author(s):  
Qin Wang ◽  
Jinke Jiang ◽  
Hua Chen ◽  
Junwei Tian ◽  
Yu Su ◽  
...  

An approach of ease-off flank modification for hypoid gears was proposed to improve the meshing performance of automobile drive axle. Firstly, a conjugate pinion matching with gear globally was developed based on gear meshing theory. Secondly, a modified pinion was represented by a sum of two vector functions determining the conjugate pinion and the normal ease-off deviations expressed by both predesigned transmission error function and tooth profile modification curves to change the initial contact clearance of the tooth. Thirdly, the best ease-off deviations were determined by optimizing the minimum amplitude of loaded transmission error (ALTE) based on tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA). Finally, the results show that effective contact ratios (εe) are established by clearances both teeth space and of contact elliptical, and greatly affect ALTE. The εe is a variable value with increasing loads for the tooth with modification. ALTE decreases with increasing εe. After εe reaches the maximum, ALTE increases with increasing loads. The mismatch of the best ease-off tooth is minimal, which contributes to effective reduction in ALTE, thus significantly improving drive performance.


Sign in / Sign up

Export Citation Format

Share Document