minimum amplitude
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 12 (2) ◽  
pp. 822
Author(s):  
Qin Wang ◽  
Jinke Jiang ◽  
Hua Chen ◽  
Junwei Tian ◽  
Yu Su ◽  
...  

An approach of ease-off flank modification for hypoid gears was proposed to improve the meshing performance of automobile drive axle. Firstly, a conjugate pinion matching with gear globally was developed based on gear meshing theory. Secondly, a modified pinion was represented by a sum of two vector functions determining the conjugate pinion and the normal ease-off deviations expressed by both predesigned transmission error function and tooth profile modification curves to change the initial contact clearance of the tooth. Thirdly, the best ease-off deviations were determined by optimizing the minimum amplitude of loaded transmission error (ALTE) based on tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA). Finally, the results show that effective contact ratios (εe) are established by clearances both teeth space and of contact elliptical, and greatly affect ALTE. The εe is a variable value with increasing loads for the tooth with modification. ALTE decreases with increasing εe. After εe reaches the maximum, ALTE increases with increasing loads. The mismatch of the best ease-off tooth is minimal, which contributes to effective reduction in ALTE, thus significantly improving drive performance.


Author(s):  
Tharani Duraisamy ◽  
Selvajyothi Kamakshy ◽  
Karthikeyan Sholampettai Subramanian ◽  
Rusan Kumar Barik ◽  
Qingsha S. Cheng

Abstract This paper presents a miniaturized tri- and quad-band power divider (PD)based on substrate integrated waveguide (SIW). By adopting different types of modified circular complementary split-ring resonators on the top surface of SIW, multiple passbands are generated propagating below the SIW cut-off frequency. The working principle is based on evanescent mode propagation that decreases the operating frequency of the PD and helps in the miniaturization of the proposed structure. The operating frequency of the proposed PD can be individually controlled by changing the dimensions of the resonator. To verify the proposed concept, a tri-band and a quad-band PD exhibiting 3 dB equal power division at 2.41/3.46/4.65 GHz and 2.42/3.78/4.74/5.8 GHz are designed using the full-wave simulator, validated through circuit model, fabricated and experimentally verified. The measured results agree well with the simulations. The proposed PDs have good performance in terms of reasonable insertion loss, isolation, minimum amplitude and phase imbalance, smaller footprint, easy fabrication and integration. The size of the fabricated prototype is 18.3 mm × 8.4 mm, which corresponds to 0.205λ g × 0.094λ g , λ g being the guided wavelength at the first operating frequency.


Circulation ◽  
2021 ◽  
Vol 144 (Suppl_2) ◽  
Author(s):  
Sarah Shaver ◽  
Amanda Gonzalez ◽  
Mary Chang ◽  
james manley ◽  
ELISABETE ARAMENDI ◽  
...  

Introduction: Effective ventilation during 30:2 CPR has been linked to improved outcomes, but definitive evidence is lacking. We developed a method to identify thoracic bioimpedance ventilation waveforms from defibrillator recordings. Hypothesis: Bioimpedance ventilation waveform amplitude is proportional to tidal volume. It is possible to identify a minimum amplitude for a valid ventilation waveform. Methods: To determine the relationship between tidal volume and bioimpedance waveform amplitude, we studied 26 healthy volunteers (12 males and 14 females). Volunteers breathed fixed positive pressure tidal volumes (250mL, 300 mL, 400 mL, 600 mL, and 800 mL) given by a Maquet SERVO-I ventilator (Getinge US Sales, Wayne, NJ, USA) through a mouthpiece while a Lifepak12 (Physio-Control, Redmond, WA) defibrillator recorded thoracic bioimpedance through electrode pads placed on the chest. We measured the impedance amplitudes of six breaths at each tidal volume and the weight and height of each volunteer. We set the minimum effective tidal volume at 250 mL. Results: For males and females, respectively, mean (±SD) was 180.1±8 cm vs. 164±3.5 cm, and mean weight was 85.6±9.6 kg vs. 58.3±8.6 kg. Median (IQR) bioimpedance amplitude for each tidal volume split by sex is shown in the Figure (Y-axis, 1 mm = 0.25 Ohm). Conclusion: Bioimpedance amplitude is proportional to tidal volume and also varies by height, weight, and sex. Sex may be a possible surrogate for height and weight. The minimum amplitude is 0.375 Ohm for a valid bioimpedance ventilation waveform.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Thomas Roloff ◽  
Rytis Mitkus ◽  
Jann Niklas Lion ◽  
Michael Sinapius

Commercially available photopolymer resin is combined with Lead Zirconate Titanate (PZT) micrometer size piezoelectric particles to form 3D printable suspensions that solidify under UV light. This in turn allows achieving various non-standard sensor geometries that might bring benefits, such as increased piezoelectric output in specific conditions. However, it is unclear whether piezoelectric composite materials are suitable for Guided Ultrasonic Wave (GUW) detection, which is crucial for Structural Health Monitoring (SHM) in different applications. In this study, thin piezoelectric composite sensors are tape casted, solidified under UV light, covered with electrodes, polarized in a high electric field and adhesively bonded onto a wave guide. This approach helps to understand the capabilities of thin piezoelectric composite sensors for GUW detection. In an experimental study, thin 2-dimensional rectangular, circular and annulus segment shaped piezoelectric composite sensors with an effective surface area smaller than 400 mm2 applied to an aluminum plate with a thickness of 2 mm demonstrate successful detection of GUW up to 250 kHz. An analytical calculation of the maximum and minimum amplitude for the ratio of the wavelength and the sensor length in wave propagation direction shows good agreement with the sensor-recorded amplitude. The output of the piezoelectric composite sensors is compared to commercial piezoelectric discs to evaluate their performance.


2021 ◽  
pp. 2150451 ◽  
Author(s):  
Cheng-Cheng Wei ◽  
Bo Tian ◽  
Qi-Xing Qu ◽  
Su-Su Chen ◽  
Dan-Yu Yang

For a nonlinear Schrödinger–Hirota equation with the spatio-temporal dispersion and Kerr law nonlinearity in nonlinear optics, we derive a Lax pair, a Darboux transformation and two families of the periodic-wave solutions via the Jacobian elliptic functions dn and cn. We construct the linearly-independent and non-periodic solutions of that Lax pair, and substitute those solutions into the Darboux transformation to get the rogue-periodic-wave solutions. When the third-order dispersion or group velocity dispersion (GVD) or inter-modal dispersion (IMD) increases, the maximum amplitude of the rogue-periodic wave remains unchanged. From the rogue-dn-periodic-wave solutions, when the GVD decreases, the minimum amplitude of the rogue-dn-periodic wave decreases. When the third-order dispersion decreases, the minimum amplitude of the rogue-dn-periodic wave rises. Decrease of the IMD causes the period of the rogue-dn-periodic wave to decrease. From the rogue-cn-periodic-wave solutions, when the GVD increases, the minimum amplitude of the rogue-cn-periodic wave decreases. Increase of the third-order dispersion or IMD leads to the decrease of the period.


Author(s):  
Аlexander G. Petrov ◽  

The inverse problem is posed of stabilizing a spherical pendulum (a mass point at the end of a weightless solid rod of length l ) in a given position using high-frequency vibration of the suspension point. The position of the pendulum is determined by the angle between the pendulum rod and the gravity acceleration vector. For any given position of the pendulum, a series of oblique vibration parameters (amplitude of the vibration velocity and the angle between the vibration velocity vector and the vertical) were found that stabilize the pendulum in this position. From the obtained series of solutions, the parameters of optimal vibration (vibration with a minimum amplitude of velocity) are selected depending on the position of the pendulum. The region of initial conditions is studied, of which the optimal vibration leads the pendulum to a predetermined stable position after a sufficiently long time. This area, following N. F.Morozov et al., called the area of attraction.


2021 ◽  
Author(s):  
Miaofen Li ◽  
◽  
Youmin Liu ◽  
Tianyang Wang ◽  
Fulei Chu ◽  
...  

In this paper, a novel time-frequency (TF) analysis method, called the short-time Fourier transform using odd symmetric window function (OSTFT), is proposed by using odd symmetric window function to replace the conventional even window function of STFT. Different from conventional STFT acquiring the amplitude maximum at time and frequency centers, OSTFT acquires the minimum amplitude of 0. Hence, OSTFT can obtain a TFR with high TF resolution by utilizing the leaked energy rather than restraining it. It is worth to mention that the proposed OSTFT can vitiate the effect of window size we choose on the TFR obtained. Furthermore, it also has a good performance on signals with complex instantaneous frequencies (IF), even crossing IFs. Because we just replace the conventional window function of STFT, the time-consuming of the proposed OSTFT is at the same level as the conventional STFT. The effectiveness of proposed OSTFT has been validated on two complex multi-component simulated numerical signals and a signal collected from the brown bat.


2020 ◽  
Vol 245 ◽  
pp. 582-590
Author(s):  
Eduard Timashev

One of the most promising ways to improve the efficiency of mechanized oil production is a plunger pump with a submersible drive, which allows obtaining harmonic reciprocating movement of the plunger. In the pumping process of well products by plunger pumps, oscillations in the velocity and pressure of the liquid in the lifting pipes occur, which lead to an increase in cyclic variable loads on the plunger, a decrease in the drive life period and the efficiency of the pumping unit. To eliminate the pulsation characteristics of the plunger pump and increase the reliability indicators of the pumping unit (in particular, the overhaul period), pneumatic compensators can be used. A method for calculating the optimal technological parameters of a system of deep pneumatic compensators for plunger pumping units with a submersible drive, based on mathematical modeling of hydrodynamic processes in pipes, has been developed. Calculations of the forming flow velocity and pressure in the lifting pipes of submersible plunger units equipped with pneumatic compensators (PC) have been carried out. Influence of the PC technological parameters on the efficiency of smoothing the oscillations of velocity and pressure in the pipes has been analyzed. Non-linear influence of the charging pressure and PC total volume on the efficiency of their work has been established. Optimal pressure of PC charging, corresponding to the minimum pressure in the tubing during the pumping cycle for the considered section of the tubing, is substantiated. Two ultimate options of PC system placement along the lifting pipes are considered. In the first option, PC are placed sequentially directly at the outlet of the plunger pump, in the second - evenly along the lift. It is shown that the first option provides the minimum amplitude of pressure oscillations at the lower end of the tubing and, accordingly, variable loads on the pump plunger. Nature of the pressure and flow velocity oscillations in the tubing at the wellhead for both options of PC placement has similar values.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1978
Author(s):  
Elisabeth Tansiana Mbitu ◽  
Seng-Chi Chen

This paper described a method to design a limit-cycle suppressor. The dithering technique was used to eliminate self-sustained oscillations or limit cycles. Otherwise, the Dual Input Describing Function (DIDF) method was applied to design dither parameters and analyze the existence of limit cycles. This method was done in a nonlinear system with relay nonlinearity using three standard dither signals, namely sine, triangle, and square waves. The aim of choosing varying dithers was to investigate the effect of dither shapes and the minimum amplitude required for the quenching strategy. First, the possibility and amplitude of limit cycles were determined graphically on the DIDF curve. Then, the minimum amplitude of dither was calculated based on the DIDF analysis. Finally, a simulation was built to verify the analytical work using a digital computer. The simulation results were related to the analysis results. It was evident that the dithering technique is a simple way to suppress limit cycles in a nonlinear system. This paper also presented that dither is an amplitude function, and square-wave dither has the minimum amplitude to quench limit cycles.


Sign in / Sign up

Export Citation Format

Share Document