Late-season catch crops reduce nitrate leaching risk after grazed green manures but release N slower than wheat demand

2015 ◽  
Vol 202 ◽  
pp. 31-41 ◽  
Author(s):  
Harun Cicek ◽  
Joanne R. Thiessen Martens ◽  
Keith C. Bamford ◽  
Martin H. Entz
2021 ◽  
Vol 124 ◽  
pp. 126244
Author(s):  
Iris Vogeler ◽  
Johannes L. Jensen ◽  
Ingrid Kaag Thomsen ◽  
Rodrigo Labouriau ◽  
Elly Møller Hansen

2018 ◽  
Author(s):  
Sissel Hansen ◽  
Randi Berland Frøseth ◽  
Maria Stenberg ◽  
Jarosław Stalenga ◽  
Jørgen E. Olesen ◽  
...  

Abstract. The emissions of nitrous oxide (N2O) and leaching of nitrate (NO3) have considerable negative impacts on climate and the environment. Although these environmental burdens are on average less per unit area in organic than in non-organic production, they are not smaller per unit of product. If organic farming is to maintain its goal of being an environmentally friendly production system, these emissions should be mitigated. We discuss the impact of possible triggers within organic arable farming practice for the risk of N2O emissions and NO3 leaching under European climatic conditions, and possible strategies to reduce these. Organic arable crop rotations can be characterised as diverse with frequent use of legumes, intercropping and organic fertilizers. The soil organic matter content and share of active organic matter, microbial and faunal activity are higher, soil structure better and yields lower, than in non-organic, arable crop rotations. Soil mineral nitrogen (SMN), N2O emissions and NO3 leaching are low under growing crops, but there is high potential for SMN accumulation and losses after crop termination or crop harvest. The risk for high N2O fluxes is increased when large amounts of herbage or organic fertilizers with readily available nitrogen (N) and carbon are incorporated into the soil or left on the surface. Freezing/thawing, drying/rewetting, compacted and/or wet soil and mixing with rotary harrow further enhance the risk for high N2O fluxes. These complex soil N dynamics mask the correlation between total N-input and N2O emissions from organic arable crop rotations. Incorporation of N rich plant residues or mechanical weeding followed by bare fallow increases the risk of nitrate leaching. In contrast, strategic use of deep-rooted crops with long growing seasons in the rotation reduces nitrate leaching risk. Reduced tillage can reduce N leaching if yields are maintained. Targeted treatment and use of herbage from green manures, crop residues and catch crops will increase N efficiency and reduce N2O emissions and NO3 leaching. Continued regular use of catch crops has the potential to reduce NO3 leaching but may enhance N2O emissions. A mixture of legumes and non-legumes (for instance grasses or cereals) are as efficient a catch crop as monocultures of non-legume species.


Sign in / Sign up

Export Citation Format

Share Document