scholarly journals Review of key causes and sources for N<sub>2</sub>O emissions and NO<sub>3</sub>-leaching from organic arable crop rotations

2018 ◽  
Author(s):  
Sissel Hansen ◽  
Randi Berland Frøseth ◽  
Maria Stenberg ◽  
Jarosław Stalenga ◽  
Jørgen E. Olesen ◽  
...  

Abstract. The emissions of nitrous oxide (N2O) and leaching of nitrate (NO3) have considerable negative impacts on climate and the environment. Although these environmental burdens are on average less per unit area in organic than in non-organic production, they are not smaller per unit of product. If organic farming is to maintain its goal of being an environmentally friendly production system, these emissions should be mitigated. We discuss the impact of possible triggers within organic arable farming practice for the risk of N2O emissions and NO3 leaching under European climatic conditions, and possible strategies to reduce these. Organic arable crop rotations can be characterised as diverse with frequent use of legumes, intercropping and organic fertilizers. The soil organic matter content and share of active organic matter, microbial and faunal activity are higher, soil structure better and yields lower, than in non-organic, arable crop rotations. Soil mineral nitrogen (SMN), N2O emissions and NO3 leaching are low under growing crops, but there is high potential for SMN accumulation and losses after crop termination or crop harvest. The risk for high N2O fluxes is increased when large amounts of herbage or organic fertilizers with readily available nitrogen (N) and carbon are incorporated into the soil or left on the surface. Freezing/thawing, drying/rewetting, compacted and/or wet soil and mixing with rotary harrow further enhance the risk for high N2O fluxes. These complex soil N dynamics mask the correlation between total N-input and N2O emissions from organic arable crop rotations. Incorporation of N rich plant residues or mechanical weeding followed by bare fallow increases the risk of nitrate leaching. In contrast, strategic use of deep-rooted crops with long growing seasons in the rotation reduces nitrate leaching risk. Reduced tillage can reduce N leaching if yields are maintained. Targeted treatment and use of herbage from green manures, crop residues and catch crops will increase N efficiency and reduce N2O emissions and NO3 leaching. Continued regular use of catch crops has the potential to reduce NO3 leaching but may enhance N2O emissions. A mixture of legumes and non-legumes (for instance grasses or cereals) are as efficient a catch crop as monocultures of non-legume species.

2019 ◽  
Vol 16 (14) ◽  
pp. 2795-2819 ◽  
Author(s):  
Sissel Hansen ◽  
Randi Berland Frøseth ◽  
Maria Stenberg ◽  
Jarosław Stalenga ◽  
Jørgen E. Olesen ◽  
...  

Abstract. The emissions of nitrous oxide (N2O) and leaching of nitrate (NO3) from agricultural cropping systems have considerable negative impacts on climate and the environment. Although these environmental burdens are less per unit area in organic than in non-organic production on average, they are roughly similar per unit of product. If organic farming is to maintain its goal of being environmentally friendly, these loadings must be addressed. We discuss the impact of possible drivers of N2O emissions and NO3 leaching within organic arable farming practice under European climatic conditions, and potential strategies to reduce these. Organic arable crop rotations are generally diverse with the frequent use of legumes, intercropping and organic fertilisers. The soil organic matter content and the share of active organic matter, soil structure, microbial and faunal activity are higher in such diverse rotations, and the yields are lower, than in non-organic arable cropping systems based on less diverse systems and inorganic fertilisers. Soil mineral nitrogen (SMN), N2O emissions and NO3 leaching are low under growing crops, but there is the potential for SMN accumulation and losses after crop termination, harvest or senescence. The risk of high N2O fluxes increases when large amounts of herbage or organic fertilisers with readily available nitrogen (N) and degradable carbon are incorporated into the soil or left on the surface. Freezing/thawing, drying/rewetting, compacted and/or wet soil and mechanical mixing of crop residues into the soil further enhance the risk of high N2O fluxes. N derived from soil organic matter (background emissions) does, however, seem to be the most important driver for N2O emission from organic arable crop rotations, and the correlation between yearly total N-input and N2O emissions is weak. Incorporation of N-rich plant residues or mechanical weeding followed by bare fallow conditions increases the risk of NO3 leaching. In contrast, strategic use of deep-rooted crops with long growing seasons or effective cover crops in the rotation reduces NO3 leaching risk. Enhanced recycling of herbage from green manures, crop residues and cover crops through biogas or composting may increase N efficiency and reduce N2O emissions and NO3 leaching. Mixtures of legumes (e.g. clover or vetch) and non-legumes (e.g. grasses or Brassica species) are as efficient cover crops for reducing NO3 leaching as monocultures of non-legume species. Continued regular use of cover crops has the potential to reduce NO3 leaching and enhance soil organic matter but may enhance N2O emissions. There is a need to optimise the use of crops and cover crops to enhance the synchrony of mineralisation with crop N uptake to enhance crop productivity, and this will concurrently reduce the long-term risks of NO3 leaching and N2O emissions.


2014 ◽  
Vol 11 (4) ◽  
pp. 5765-5809 ◽  
Author(s):  
T. Eickenscheidt ◽  
A. Freibauer ◽  
J. Heinichen ◽  
J. Augustin ◽  
M. Drösler

Abstract. The change in the German energy policy resulted in a strong development of biogas plants in Germany. As a consequence, huge amounts of nutrient rich residues remain from the fermentative process, which are used as organic fertilizers. Drained peatlands are increasingly used to satisfy the huge demand for fermentative substrates and the digestate is returned to the peatlands. However, drained organic soils are considered as hot spots for nitrous oxide (N2O) emissions and organic fertilization is additionally known to increase N2O emissions from managed grasslands. Our study addressed the questions (a) to what extent biogas digestate and cattle slurry application increase N2O, methane (CH4) and ammonia (NH3) fluxes as well as the mineral nitrogen use efficiency (NUEmin), and (b) how different soil organic matter contents (SOM) promote the production of N2O. The study was conducted at two areas within a grassland parcel, which differed in their soil organic carbon (SOC) contents. At each area (named Corg-medium and Corg-high) two sites were established, one was fertilized five times with biogas digestate and one with cattle slurry. For each treatment, fluxes of N2O and CH4 were measured over two years using the closed chamber method. For NH3 measurements we used the calibrated dynamic chamber method. On an annual basis the application of biogas digestate significantly enhanced the N2O fluxes compared to the application of cattle slurry and additionally increased the NUEmin. Furthermore, N2O fluxes from the Corg-high site significantly exceeded N2O fluxes from the Corg-medium sites. Annual cumulative emissions ranged from 0.91 ± 0.49 kg N ha−1 yr−1 to 3.14 ± 0.91 kg N ha−1 yr−1. Significantly different CH4 fluxes between the investigated treatments or the different soil types were not observed. Cumulative annual CH4 exchange rates varied between −0.21 ± 0.19 kg C ha−1 yr−1 and −1.06 ± 0.46 kg C ha−1 yr−1. Significantly higher NH3 losses from treatments fertilized with biogas digestate compared to those fertilized with cattle slurry were observed. The total NH3 losses following splash plate application were 18.17 kg N ha−1 for the digestate treatments and 3.48 kg N ha−1 for the slurry treatments (36% and 15% of applied NH4&amp;plus;-N). The observed linear increase of 16 days cumulative N2O-N exchange or rather annual N2O emissions, due to a higher mean groundwater level and a higher application rate of NH4+-N, reveal the importance of site adapted N fertilization and the avoidance of N surpluses in Corg rich grasslands.


2016 ◽  
Vol 62 (No. 8) ◽  
pp. 355-360 ◽  
Author(s):  
L. Hlisnikovský ◽  
G. Mühlbachová ◽  
E. Kunzová ◽  
M. Hejcman ◽  
M. Pechová

The 28-day incubation experiment was carried out to evaluate the impact of the application of digestate (Dig); digestate with straw (DigSt); pig slurry (Slu) and mineral fertilizer (NPK) on Cd, Cu, Mn and Zn availability, on K<sub>2</sub>SO<sub>4</sub>-extractable carbon content and on the soil pH value in long-term contaminated soil. At days three and seven of the experiment, the 0.01 mol/L CaCl<sub>2</sub>-extractable fractions of Cd, Zn and Mn significantly decreased under organic treatments (Dig, DigSt and Slu) with the most pronounced effect under Dig treatment. The NPK treatment caused the increase of risky element concentrations since day 21 of incubation which was accompanied with pH decrease. The contents of 0.5 mol/L K<sub>2</sub>SO<sub>4</sub>-extractable carbon were the highest at day 3 and 7 of incubation in organic treatments. The significant correlations between 0.5 mol/L K<sub>2</sub>SO<sub>4</sub>-extractable carbon and CaCl<sub>2</sub>-extractable metal concentrations showed a close relationship between fresh organic matter added in organic fertilizers and risky element availability, suggesting that newly added labile organic matter can form temporary ligands with risky elements and release them later following its decomposition.  


2020 ◽  
Vol 298 ◽  
pp. 106964 ◽  
Author(s):  
Lars Biernat ◽  
Friedhelm Taube ◽  
Iris Vogeler ◽  
Thorsten Reinsch ◽  
Christof Kluß ◽  
...  

Author(s):  
V. G. Kryzhanovskiy ◽  

Manifestations of agrophysical degradation, first of all, soil compaction and loss of structure, remain an urgent issue for Ukrainian chernozems. With increased anthropogenic pressure on soils, these processes only spread and therefore it is very important to find tillage systems and technologies that would reduce the negative impact on soils. The main areas that reduce the intensity of degradation processes in soils are the minimization of tillage and biologization of agriculture. Intensive tillage has led to accelerated mineralization of organic matter and as a consequence of reducing its content consumption of soil structure, and hence the deterioration of its water, air, heat and microbiological regimes. The reasons for the deterioration of the physical properties of the soil are the use of agricultural machinery, intensive tillage, a significant reduction in land reclamation, especially organic fertilizers, a significant share in crop rotations of row crops and almost complete absence of perennial grasses. At the same time, maintaining physical properties in the optimal range of values is a necessary condition for obtaining the planned return from fertilizers, ameliorants and water, the cost of which is currently very high. In the system of agrotechnical measures aimed at increasing soil fertility and crop productivity, rational mechanical tillage is of great importance, which regulates agrophysical, biological and agrochemical processes occurring in the soil, the intensity of decomposition and accumulation of organic matter, content root-containing layer and effective use of fertilizers applied by plants. Studies have shown the improvement of the parameters of physical properties of soils while minimizing their cultivation. Obviously, for the successful application of minimum tillage technologies, the soil must have physical properties that are close to optimal for most crops. That is why the study of the impact of soil-protective agricultural techniques on porosity and other indicators of physical properties is relevant for specific soil and climatic conditions.


1995 ◽  
Vol 30 (3) ◽  
pp. 443-468 ◽  
Author(s):  
Wray Lampman

Abstract Agricultural practices today employ a vast array of chemicals in large volumes in order to improve both the quantity and quality of our agricultural products. While it has long been recognized that runoff from agricultural land has the potential to degrade surface water quality, only recently has attention been focused on the effect of agricultural usage on groundwater. In order to study the effects of pesticides and nitrate usage on the quality of groundwater, in 1985 the Ontario Ministry of Environment and Energy began operating a groundwater monitoring program in southwestern Ontario. Data generated from this program, which utilized sample data collected from both wells and piezometers, indicate that in areas of heavy pesticide and nitrate usage, shallow groundwater is continuously testing positive for nitrate and a variety of pesticides. Factors which influence the number of positive incidents for pesticides are directly related to the persistence of the chemical, its method of application, and the amounts utilized. Soil types and depth to groundwater, although influencing the time of detection, do not govern the number of detection events. Changes in agricultural practices are also monitored to see if pesticide reduction, a variation in the method of application, crop rotations and an increase in soil organic matter could influence the levels of pesticide It was found that when chemicals of a low persistence were applied post emergent at the minimum recommended rate, pesticides were not detected in the groundwater. Crop rotations were also effective in reducing the level of pesticides in groundwater. Tillage practices and increases in soil organic matter were also effective in reducing pesticide contamination. It was found that when chemicals of a low persistence were applied post emergent at the minimum recommended rate, pesticides were not detected in the groundwater. Crop rotation and reduction in nitrate loadings were found to be the only effective methods to reduce nitrate loading to groundwater. It was also found that elevated levels of potassium and/or nitrate in groundwater serve as a reliable indicator of the groundwater susceptibility to pesticide contamination. Remedial action to alleviate the impact of pesticides and nitrates in groundwater must focus on the chemical usage patterns employed on the farm site and an overall reduction of the quantities of pesticides and nitrates utilized. These patterns must incorporate a well-designed program of crop rotation with the proper utilization of these chemicals on site.


Soil Research ◽  
2020 ◽  
Vol 58 (2) ◽  
pp. 198 ◽  
Author(s):  
Janquieli Schirmann ◽  
Diego Fernandes de Bastos ◽  
Douglas Adams Weiler ◽  
Murilo G. Veloso ◽  
Jeferson Dieckow ◽  
...  

Native grassland supports extensive livestock production in the Pampas of South America, but the impact of cattle excreta on nitrous oxide (N2O) emissions remains unknown in this biome. The objective of this study was to determine the N2O emission factor (EF-N2O, % of N applied that is emitted as N2O) for urine and dung from beef cattle grazing on native grasslands. A field trial was conducted under low and moderate forage allowances (FA4 and FA12; i.e. 4 and 12 kg dry matter/100 kg live weight respectively) during the 30th year of a long-term grassland experiment on a Typic Paleudult in South Brazil. Urine and dung were applied onto separate patches, at rates equivalent to one average urination or defecation; and N2O fluxes were monitored with closed static chambers over 338 days. In adjacent microplots receiving the same excreta treatment, water-filled pore space, nitrate, ammonium and extractable dissolved organic carbon were monitored in the top 0.1 m of soil. Averaged across the forage allowances, daily soil N2O fluxes were low in the control without excreta (1.3 g N ha–1), but increased upon application of dung (3.8 g N ha–1) and urine (66 g N ha–1). The annual N2O emission and the EF-N2O for urine were greater under FA12 than FA4, but no difference was observed for dung. The positive relationships between N2O-N emissions and ammonium intensity and nitrate intensity suggest that N2O may have been produced concurrently by nitrification, nitrifier/denitrification and denitrification. On average, the EF-N2O was almost 10 times higher for urine than for dung (0.74% vs 0.08%), both much lower than the IPCC’s Tier 1 default value of 2%. Our findings reinforce the need for disaggregating the EF-N2O for urine and dung and of revising the IPCC’s Tier 1 EF-N2O.


2014 ◽  
Vol 11 (22) ◽  
pp. 6187-6207 ◽  
Author(s):  
T. Eickenscheidt ◽  
A. Freibauer ◽  
J. Heinichen ◽  
J. Augustin ◽  
M. Drösler

Abstract. A change in German energy policy has resulted in a strong increase in the number of biogas plants in Germany. As a consequence, huge amounts of nutrient-rich residues, the by-products of the fermentative process, are used as organic fertilizers. Drained peatlands are increasingly used to satisfy the huge demand for fermentative substrates (e.g., energy crops, grass silage) and the digestate is returned to the peatlands. However, drained organic soils are considered as hot spots for nitrous oxide (N2O) emissions and organic fertilization is additionally known to increase N2O emissions from managed grasslands. Our study addressed the questions (a) to what extent biogas digestate and cattle slurry application increase N2O and methane (CH4) fluxes as well as the mineral nitrogen use efficiency (NUEmin) and grass yield, and (b) how different soil organic matter contents (SOMs) and nitrogen contents promote the production of N2O. In addition NH3 volatilization was determined at one application event to obtain first clues with respect to the effects of soil and fertilizer types. The study was conducted at two sites within a grassland parcel, which differed in their soil organic carbon (SOC) and N contents. At each site (named Corg-medium and Corg-high) three plots were established: one was fertilized five times with biogas digestate, one with cattle slurry, and the third served as control plot. On each plot, fluxes of N2O and CH4 were measured on three replicates over 2 years using the closed chamber method. For NH3 measurements we used the calibrated dynamic chamber method. On an annual basis, the application of biogas digestate significantly enhanced the N2O fluxes compared to the application of cattle slurry and additionally increased the plant N-uptake and NUEmin. Furthermore, N2O fluxes from the Corg-high treatments significantly exceeded N2O fluxes from the Corg-medium treatments. Annual cumulative emissions ranged from 0.91 ± 0.49 to 3.14 ± 0.91 kg N ha−1 yr−1. Significantly different CH4 fluxes between the investigated treatments or the different soil types were not observed. Cumulative annual CH4 exchange rates varied between −0.21 ± 0.19 and −1.06 ± 0.46 kg C ha−1 yr−1. Significantly higher NH3 losses, NUEmin and grass yields from treatments fertilized with biogas digestate compared to those fertilized with cattle slurry were observed. The total NH3 losses following the splash plate application were 18.17 kg N ha−1 for the digestate treatments and 3.48 kg N ha−1 for the slurry treatments (36 and 15% of applied NH4+–N). The observed linear increase of 16 days' cumulative N2O–N exchange or annual N2O emissions, with mean groundwater level and ammonium application rate, reveals the importance of site-adapted N fertilization and the avoidance of N surpluses in Corg-rich grasslands.


Sign in / Sign up

Export Citation Format

Share Document