Grassland winners and arable land losers: The effects of post-totalitarian land use changes on long-term population trends of farmland birds

2016 ◽  
Vol 232 ◽  
pp. 208-217 ◽  
Author(s):  
Jiſí Reif ◽  
Jan Hanzelka
2011 ◽  
Vol 8 (3) ◽  
pp. 4391-4419 ◽  
Author(s):  
W. Clymans ◽  
E. Struyf ◽  
G. Govers ◽  
F. Vandevenne ◽  
D. J. Conley

Abstract. Human land use changes directly affect silica (Si) mobilisation and Si storage in terrestrial ecosystems and influence Si export from the continents, although the magnitudes of the impact are unknown. Yet biogenic silica (BSi) in soils is an understudied aspect. We have quantified and compared total biogenic (PSia) and easily soluble (PSie) Si pools at four sites along a gradient of disturbance in southern Sweden. An estimate of the magnitude of change in temperate continental BSi pools due to human disturbance is provided. Land use clearly affects BSi pools and their distribution. Total PSia and PSie for a continuous forested site at Siggaboda Nature Reserve (66 900 ± 22 800 kg SiO2 ha−1 and 952 ± 16 kg SiO2 ha−1) are significantly higher than disturbed land use types from the Råshult Culture Reserve including arable land (28 800 ± 7200 kg SiO2 ha−1 and 239 ± 91 kg SiO2 ha−1), pasture sites (27 300 ± 5980 kg SiO2 ha−1 and 370 ± 129 kg SiO2 ha−1) and grazed forest (23 600 ± 6370 kg SiO2 ha−1 and 346 ± 123 kg SiO2 ha−1). Vertical PSia and PSie profiles show significant (p<0.05) variation among the sites. These differences in size and distribution are interpreted as the long-term effect of reduced BSi replenishment and increased mobilisation of the PSia in disturbed soils. In temperate regions, total PSia showed a 10 % decline since agricultural development (3000BCE). Recent agricultural expansion (after 1700CE) has resulted in an average export of 1.1 ± 0.8 Tmol Si yr−1, leading to an annual contribution of ca. 20 % to the global land-ocean Si flux carried by rivers. Human activities clearly exert a long-term influence on Si cycling in soils and contribute significantly to the land-ocean Si flux.


2014 ◽  
Vol 59 (2) ◽  
pp. 151-160
Author(s):  
Bosko Gajic ◽  
Branka Kresovic ◽  
Snezana Dragovic ◽  
Zorica Sredojevic ◽  
Ranko Dragovic

Changes in land use can significantly affect aggregate distribution and water stability of structural aggregates. This study was conducted in the Kolubara River Valley, Western Serbia, to determine the effects of land use changes on composition and water stability of aggregates in humus horizons (0-30 cm) of noncarbonated Gleyic Fluvisols. This study was conducted at nine sites, where each site contained two adjacent land uses of natural grassland and arable land which underwent crop rotation for >100 years. Soil samples were taken from depths of 0-10, 10-20 and 20-30 cm for each land use. When the grassland was converted into arable land, the content of the agronomically most valuable aggregates (0.25-10 mm) of cultivated soils for a depth of 0-30 cm was significantly reduced by 22-40%, while the percentage of cloddy aggregates (>10 mm) increased by 41-68%, compared to grassland. In addition, the long-term arable soil had significantly (p<0.05) lower aggregate stability, determined by wet sieving, than grassland. The lowest aggregate stability was found in aggregates > 3 mm. Their content is ? 2.3 times lower in arable soil (12.6%) than in grassland (28.6%) at a depth of 0-10 cm. In addition, meanweight diameters of dry and wetstable aggregates and structure coefficient showed significant differences between land use at a depth of 0-30 cm. The results showed that the conversion of natural grassland to arable land in the lowland ecosystems of Western Serbia degraded aggregate distribution and stability.


Land ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 165 ◽  
Author(s):  
Premysl Stych ◽  
Jan Kabrda ◽  
Ivan Bicik ◽  
Josef Lastovicka

The major topic of this article is the evaluation of the regional differentiation of the long-term changes in land use in Czechia. This study searches the spatial and temporal differentiation of the changes and their driving forces since the 19th century. The comprehensive land use land cover change database (LUCC Czechia Database) which comprises cadastral data on the land use in the years 1845, 1896, 1948, 1990, 2000, and 2010 for more than 8000 units, was the main data source. The chief benefit of this article can be seen in the methodical procedures of the application of the “Rate of heterogeneity” (H) derived from the Gini coefficient in the research of the differentiation/inequality of the long-term land use change. GIS modeling tools were used to calculate the selected geographical characteristics (altitude and slope) of the examined units for the purpose of searching the factors of the land use changes. The results show a strong trend in the differentiation of the long-term land use changes. Two main antagonistic processes took place in the land use structure during the observed period of 1845–2010. The fertile regions experienced agricultural intensification with the concentration of the arable land in these regions. On the other hand, the infertile regions experienced extensification, accompanied by afforestation and grass planting during the last decades. The influence of natural conditions (altitude and slope) on the distribution of the land use has been growing—the arable land has been concentrated into the lower altitudes and, more significantly, into less steep areas. Grasslands and forests predominantly occupy the less favored areas with higher altitudes and steeper slopes. The built-up areas have been strongly concentrated and regionally polarized. In 1845, half of the Czech built-up areas were concentrated in 31% of the total country area, whereas in 2010, it was in 21%.


2020 ◽  
Vol 12 (3) ◽  
pp. 406 ◽  
Author(s):  
Michael J. Hill ◽  
Juan P. Guerschman

Vegetation Fractional Cover (VFC) is an important global indicator of land cover change, land use practice and landscape, and ecosystem function. In this study, we present the Global Vegetation Fractional Cover Product (GVFCP) and explore the levels and trends in VFC across World Grassland Type (WGT) Ecoregions considering variation associated with Global Livestock Production Systems (GLPS). Long-term average levels and trends in fractional cover of photosynthetic vegetation (FPV), non-photosynthetic vegetation (FNPV), and bare soil (FBS) are mapped, and variation among GLPS types within WGT Divisions and Ecoregions is explored. Analysis also focused on the savanna-woodland WGT Formations. Many WGT Divisions showed wide variation in long-term average VFC and trends in VFC across GLPS types. Results showed large areas of many ecoregions experiencing significant positive and negative trends in VFC. East Africa, Patagonia, and the Mitchell Grasslands of Australia exhibited large areas of negative trends in FNPV and positive trends FBS. These trends may reflect interactions between extended drought, heavy livestock utilization, expanded agriculture, and other land use changes. Compared to previous studies, explicit measurement of FNPV revealed interesting additional information about vegetation cover and trends in many ecoregions. The Australian and Global products are available via the GEOGLAM RAPP (Group on Earth Observations Global Agricultural Monitoring Rangeland and Pasture Productivity) website, and the scientific community is encouraged to utilize the data and contribute to improved validation.


Insects ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 269
Author(s):  
Eleanor N. Field ◽  
Ryan E. Tokarz ◽  
Ryan C. Smith

The ecology and environmental conditions of a habitat have profound influences on mosquito population abundance. As a result, mosquito species vary in their associations with particular habitat types, yet long-term studies showing how mosquito populations shift in a changing ecological landscape are lacking. To better understand how land use changes influence mosquito populations, we examined mosquito surveillance data over a thirty-four-year period for two contrasting sites in central Iowa. One site displayed increasing levels of urbanization over time and a dramatic decline in Culex pipiens group (an informal grouping of Culex restuans, Culex pipiens, and Culex salinarius, referred to as CPG), the primary vectors of West Nile virus in central Iowa. Similar effects were also shown for other mosquito vector populations, yet the abundance of Aedes vexans remained constant during the study period. This is in contrast to a second site, which reflected an established urban landscape. At this location, there were no significant changes in land use and CPG populations remained constant. Climate data (temperature, total precipitation) were compiled for each location to see if these changes could account for altered population dynamics, but neither significantly influence CPG abundance at the respective site locations. Taken together, our data suggest that increased landscape development can have negative impacts on Culex vector populations, and we argue that long-term surveillance paired with satellite imagery analysis are useful methods for measuring the impacts of rapid human development on mosquito vector communities. As a result, we believe that land use changes can have important implications for mosquito management practices, population modeling, and disease transmission dynamics.


2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Roxanne Lai ◽  
Takashi Oguchi

<p><strong>Abstract.</strong> Changing land use is an increasingly important issue as human habits, behaviors, and needs change. There has been an increase in land and agricultural abandonment in some places of the world. In Japan, movement of the population from rural to urban areas have resulted in much land and agricultural abandonment. In 2016, a land ministry survey showed that 4.1 million hectares of land in Japan had unclear ownership, with farmland making up 16.9% of the total. As vegetation cover changes after land abandonment, this temporal and spatial effect may have important effects on geomorphic processes such as landslide susceptibility and landslide kinematics.</p><p>Here we track long-term land use changes over vegetated landslide areas of the Sanbagawa and Mikabu Belts of Shikoku Island, Japan. The Sanbagawa and Mikabu Belts are metamorphic belts that run across Southwest Japan, and are home to numerous large crystalline schist landslides, including the widely-studied slow but continuously moving Zentoku landslide. Villages and communities have been built on these landslide areas due to historical and cultural factors, as well as the fertility of the soil. Consequently, given the changing land uses including land abandonment in these landslide areas over time, we use long-term high-resolution land cover vegetation datasets to examine first the long-term land use changes, and then use statistical methods to explore their relationships with landslide susceptibility and kinematics. Mapping of spatial data and their analysis using GIS constitute a core part of the research. The results suggest interconnections between land use changes and land movement.</p>


2021 ◽  
Vol 101 (1) ◽  
pp. 31-47
Author(s):  
Marko Langovic ◽  
Slavoljub Dragicevic ◽  
Ivan Novkovic ◽  
Nenad Zivkovic ◽  
Radislav Tosic ◽  
...  

Riverbank erosion and lateral channel migration are important geomorphological processes which cause various landscape, socio-economic, and environmental consequences. Although those processes are present on the territory of Serbia, there is no available data about the soil loss caused by riverbank erosion for the entire country. In this study, the spatial and temporal dynamics of the riverbank erosion for the largest internal rivers in Serbia (Velika Morava, Zapadna Morava, Juzna Morava, Pek, Mlava, Veliki Timok, Kolubara) was assessed using remote sensing and GIS. The aim of this paper is to determine the total and average soil loss over large-scale periods (1923-2020), comparing data from the available sources (aerial photographs, satellite images, and different scale paper maps). Results indicated that lateral migration caused significant problems through land loss (approximately 2,561 ha), especially arable land, and land use changes in river basins, but also economic loss due to the reduction of agricultural production. Total and average soil loss was calculated for five most representative meanders on all studied rivers, and on the basis of the obtained values, certain regularities about further development and dynamics of riverbank movement are presented. A better understanding of river channel migration in this area will be of a great importance for practical issues such as predicting channel migration rates for river engineering and planning purposes, soil and water management and land use changes, environment protection.


2020 ◽  
Vol 9 (5) ◽  
pp. 324
Author(s):  
Jiaao Guo ◽  
Victoria Fast ◽  
Philip Teri ◽  
Kirby Calvert

Land-based, utility-scale renewable energy (RE) systems using wind or solar resources to generate electricity is becoming a decisive solution to meet long-term carbon emission reduction goals. Local governments are responding in kind, by adopting their own goals and/or establishing policies to facilitate successful implementations of RE in their jurisdiction. One factor to successful RE development is to locate the most suitable lands, while continuing to sustain land-based economies and ecosystem services. Local governments often have limited resources; and this is especially true for small, land-constrained local governments. In this paper, we illustrate how a standardized RE technical mapping framework can be used by local governments to advance the implementation of RE in land-constrained areas, through a case study in the Town of Canmore, Alberta. Canmore has a limited municipal area surrounded by the Canadian Rockies, along with complex land-use bylaw and environmentally sensitive habitats. This mapping framework accounts for these conditions as it considers theoretical resources, technically recoverable lands, legally accessible lands, and the spatial capital cost of connecting new RE facilities. Different land-use planning scenarios are considered including changing setback buffers and expanding restrictions on development to all environmentally sensitive districts. The total RE potentials are then estimated based on the least-conflict lands. Technically speaking, even under restrictive land suitability scenarios, Canmore holds enough land to achieve ambitious RE targets, but opportunities and challenges to implementation remain. To eventually succeed in its long-term emission reduction goal, the most decisive step for Canmore is to balance the growth of energy demands, land-use changes, and practicable RE development. Mapping systems that can study the influence of land-use planning decisions on RE potential are critical to achieving this balance.


2011 ◽  
Vol 52 (No. 6) ◽  
pp. 239-244 ◽  
Author(s):  
P. Kovář

The paper is focused on the impact of land use changes on water regime. First, an emphasis was given to what extent the main components of the water balance on the experimental catchment V&scaron;eminka (region Vset&iacute;nsk&eacute; Hills) were influenced. For this reason, the WBCM-5 model was implemented for the period of 10 years in a daily step with a particular reference to simulate the components of direct runoff and of subsurface water recharge. In the selected years of the period 1990&ndash;2000, the major changes were made in land use and also the significant fluctuation of rainfall-runoff regimes were observed (e.g. dry year 1992 and flood year 1997). After WBCM-5 parameter calibration it was found that some water balance components can change in relation to substantial land use changes even up to tens of percent in a balance-consideration, i.e. in daily, monthly and yearly or decade values, namely the components of interception and also of direct runoff and of subsurface water recharge. However, a different situation appears when investigating significant short-term rainfall-runoff processes. There were about seven real flood events analysed using the model KINFIL-2 (time step 0.5 hr) during the same period of about 10 years on the same catchment. Furthermore, some land use change positive or negative scenarios were also analysed there. As opposed to long-term water balance analyses, there was never achieved any greater differences in the hydrograph peak or volume than 10%. Summarising, it is always important to distinguish a possible land use change impact in either long-term balance or short-term runoff consideration, otherwise a misunderstanding might be easily made, as can often be found when commenting on the impact on floods in some mass media.


Sign in / Sign up

Export Citation Format

Share Document