metabolic diversity
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 93)

H-INDEX

46
(FIVE YEARS 8)

2022 ◽  
Vol 34 (1) ◽  
pp. 90-105.e7
Author(s):  
Pravat Kumar Parida ◽  
Mauricio Marquez-Palencia ◽  
Vidhya Nair ◽  
Akash K. Kaushik ◽  
Kangsan Kim ◽  
...  

2021 ◽  
Author(s):  
Pau Perez Escriva ◽  
Tobias Fuhrer ◽  
Uwe Sauer

The complex interactions between gut microbiome and host or pathogen colonization resistance cannot solely be understood from community composition. Missing are causal relationships such as metabolic interactions among species to better understand what shapes the microbiome. Here, we focused on metabolic niches generated and occupied by the Oligo-Mouse-Microbiota consortium, a synthetic community composed of 12 members that is increasingly used as a model for the mouse gut microbiome. Combining mono-cultures and spent medium experiments with untargeted metabolomics uncovered broad metabolic diversity in the consortium, constituting a dense cross-feeding network with more than 100 pairwise interactions. Quantitative analysis of the cross-feeding network revealed distinct C and N food webs that highlight the two Bacteroidetes consortium members B. caecimuris and M. intestinale as primary suppliers of carbon, and a more diverse group as nitrogen providers. Cross-fed metabolites were mainly carboxylic acids, amino acids, and the so far not reported nucleobases. In particular the dicarboxylic acids malate and fumarate provided a strong physiological benefit to consumers, presumably as anaerobic electron acceptors. Isotopic tracer experiments validated the fate of a subset of cross-fed metabolites, in particular the conversion of the most abundant cross-fed compound succinate to butyrate. Thus, we show that this consortium is tailored to produce the anti-inflammatory metabolite butyrate. Overall, we provide evidence for metabolic niches generated and occupied by OMM members that lays a metabolic foundation to facilitate understanding of the more complex in vivo behavior of this consortium in the mouse gut.


2021 ◽  
Vol 22 (23) ◽  
pp. 12620
Author(s):  
Salvatore Passarella ◽  
Avital Schurr ◽  
Piero Portincasa

Some metabolic pathways involve two different cell components, for instance, cytosol and mitochondria, with metabolites traffic occurring from cytosol to mitochondria and vice versa, as seen in both glycolysis and gluconeogenesis. However, the knowledge on the role of mitochondrial transport within these two glucose metabolic pathways remains poorly understood, due to controversial information available in published literature. In what follows, we discuss achievements, knowledge gaps, and perspectives on the role of mitochondrial transport in glycolysis and gluconeogenesis. We firstly describe the experimental approaches for quick and easy investigation of mitochondrial transport, with respect to cell metabolic diversity. In addition, we depict the mitochondrial shuttles by which NADH formed in glycolysis is oxidized, the mitochondrial transport of phosphoenolpyruvate in the light of the occurrence of the mitochondrial pyruvate kinase, and the mitochondrial transport and metabolism of L-lactate due to the L-lactate translocators and to the mitochondrial L-lactate dehydrogenase located in the inner mitochondrial compartment.


2021 ◽  
Author(s):  
Lisa A Johnson ◽  
Laura A Hug

Phylum Cloacimonadota (previously Cloacimonetes, WWE1) is an understudied bacterial lineage frequently associated with engineered and wastewater systems. Cloacimonadota members were abundant and diverse in metagenomic datasets from a municipal landfill, prompting an examination of phylogenetic relationships, metabolic diversity, and pangenomic dynamics across the phylum, based on 22 publicly available genomes and 24 from landfill samples. Cloacimonadota formed two discrete clades, with one clade's genomes principally deriving from engineered systems. A few more-divergent genomes were placed basal in the tree, and not associated with either clade. Metabolic reconstructions for metagenome-assembled genomes predict an anaerobic, acetogenic, and fermentative lifestyle for the majority of Cloacimonadota surveyed. Genomes from engineered ecosystems (first clade) encode a unique suite of genes not typically found in genomes from natural environments (second clade). These encoded functions include acetate kinase, the enzyme responsible for the formation of acetate from acetyl phosphate, and carbon utilization enzymes, suggesting different substrate degradation and energy generation strategies in these ecologically and phylogenetically distinct lineages.


Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 522
Author(s):  
Patrícia Concórdio-Reis ◽  
Vítor D. Alves ◽  
Xavier Moppert ◽  
Jean Guézennec ◽  
Filomena Freitas ◽  
...  

Marine environments comprise almost three quarters of Earth’s surface, representing the largest ecosystem of our planet. The vast ecological and metabolic diversity found in marine microorganisms suggest that these marine resources have a huge potential as sources of novel commercially appealing biomolecules, such as exopolysaccharides (EPS). Six Alteromonas strains from different marine environments in French Polynesia atolls were selected for EPS extraction. All the EPS were heteropolysaccharides composed of different monomers, including neutral monosaccharides (glucose, galactose, and mannose, rhamnose and fucose), and uronic acids (glucuronic acid and galacturonic acid), which accounted for up to 45.5 mol% of the EPS compositions. Non-carbohydrate substituents, such as acetyl (0.5–2.1 wt%), pyruvyl (0.2–4.9 wt%), succinyl (1–1.8 wt%), and sulfate (1.98–3.43 wt%); and few peptides (1.72–6.77 wt%) were also detected. Thermal analysis demonstrated that the EPS had a degradation temperature above 260 °C, and high char yields (32–53%). Studies on EPS functional properties revealed that they produce viscous aqueous solutions with a shear thinning behavior and could form strong gels in two distinct ways: by the addition of Fe2+, or in the presence of Mg2+, Cu2+, or Ca2+ under alkaline conditions. Thus, these EPS could be versatile materials for different applications.


Author(s):  
G. R. Sneha ◽  
Karivaradharajan Swarnalakshmi ◽  
Meenakshi Sharma ◽  
Kedharnath Reddy ◽  
Arpan Bhoumik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document