Risk factors for European winter oilseed rape production under climate change

2019 ◽  
Vol 272-273 ◽  
pp. 30-39 ◽  
Author(s):  
Johannes Wilhelmus Maria Pullens ◽  
Behzad Sharif ◽  
Miroslav Trnka ◽  
Jan Balek ◽  
Mikhail A. Semenov ◽  
...  
2010 ◽  
Vol 148 (6) ◽  
pp. 683-694 ◽  
Author(s):  
A. P. BARNES ◽  
A. WREFORD ◽  
M. H. BUTTERWORTH ◽  
M. A. SEMENOV ◽  
D. MORAN ◽  
...  

SUMMARYVarious adaptation strategies are available that will minimize or negate predicted climate change-related increases in yield loss from phoma stem canker in UK winter oilseed rape (OSR) production. A number of forecasts for OSR yield, national production and subsequent economic values are presented, providing estimates of impacts on both yield and value for different levels of adaptation. Under future climate change scenarios, there will be increasing pressure to maintain yields at current levels. Losses can be minimized in the short term (up to the 2020s) with a ‘low’-adaptation strategy, which essentially requires some farmer-led changes towards best management practices. However, the predicted impacts of climate change can be negated and, in most cases, improved upon, with ‘high’-adaptation strategies. This requires increased funding from both the public and private sectors and more directed efforts at adaptation from the producer. Most literature on adaptation to climate change has had a conceptual focus with little quantification of impacts. It is argued that quantifying the impacts of adaptation is essential to provide clearer information to guide policy and industry approaches to future climate change risk.


2021 ◽  
Vol 129 ◽  
pp. 126341
Author(s):  
Johannes Wilhelmus Maria Pullens ◽  
Kurt Christian Kersebaum ◽  
Ulf Böttcher ◽  
Henning Kage ◽  
Jørgen Eivind Olesen

2009 ◽  
Vol 7 (42) ◽  
pp. 123-130 ◽  
Author(s):  
Michael H. Butterworth ◽  
Mikhail A. Semenov ◽  
Andrew Barnes ◽  
Dominic Moran ◽  
Jonathan S. West ◽  
...  

Effects of climate change on productivity of agricultural crops in relation to diseases that attack them are difficult to predict because they are complex and nonlinear. To investigate these crop–disease–climate interactions, UKCIP02 scenarios predicting UK temperature and rainfall under high- and low-CO 2 emission scenarios for the 2020s and 2050s were combined with a crop-simulation model predicting yield of fungicide-treated winter oilseed rape and with a weather-based regression model predicting severity of phoma stem canker epidemics. The combination of climate scenarios and crop model predicted that climate change will increase yield of fungicide-treated oilseed rape crops in Scotland by up to 0.5 t ha −1 (15%). In contrast, in southern England the combination of climate scenarios, crop, disease and yield loss models predicted that climate change will increase yield losses from phoma stem canker epidemics to up to 50 per cent (1.5 t ha −1 ) and greatly decrease yield of untreated winter oilseed rape. The size of losses is predicted to be greater for winter oilseed rape cultivars that are susceptible than for those that are resistant to the phoma stem canker pathogen Leptosphaeria maculans . Such predictions illustrate the unexpected, contrasting impacts of aspects of climate change on crop–disease interactions in agricultural systems in different regions.


Author(s):  
Paul Vollrath ◽  
Harmeet S. Chawla ◽  
Sarah V. Schiessl ◽  
Iulian Gabur ◽  
HueyTyng Lee ◽  
...  

Abstract Key message A novel structural variant was discovered in the FLOWERING LOCUS T orthologue BnaFT.A02 by long-read sequencing. Nested association mapping in an elite winter oilseed rape population revealed that this 288 bp deletion associates with early flowering, putatively by modification of binding-sites for important flowering regulation genes. Abstract Perfect timing of flowering is crucial for optimal pollination and high seed yield. Extensive previous studies of flowering behavior in Brassica napus (canola, rapeseed) identified mutations in key flowering regulators which differentiate winter, semi-winter and spring ecotypes. However, because these are generally fixed in locally adapted genotypes, they have only limited relevance for fine adjustment of flowering time in elite cultivar gene pools. In crosses between ecotypes, the ecotype-specific major-effect mutations mask minor-effect loci of interest for breeding. Here, we investigated flowering time in a multiparental mapping population derived from seven elite winter oilseed rape cultivars which are fixed for major-effect mutations separating winter-type rapeseed from other ecotypes. Association mapping revealed eight genomic regions on chromosomes A02, C02 and C03 associating with fine modulation of flowering time. Long-read genomic resequencing of the seven parental lines identified seven structural variants coinciding with candidate genes for flowering time within chromosome regions associated with flowering time. Segregation patterns for these variants in the elite multiparental population and a diversity set of winter types using locus-specific assays revealed significant associations with flowering time for three deletions on chromosome A02. One of these was a previously undescribed 288 bp deletion within the second intron of FLOWERING LOCUS T on chromosome A02, emphasizing the advantage of long-read sequencing for detection of structural variants in this size range. Detailed analysis revealed the impact of this specific deletion on flowering-time modulation under extreme environments and varying day lengths in elite, winter-type oilseed rape.


2017 ◽  
Vol 92 ◽  
pp. 60-69 ◽  
Author(s):  
Veronika Řičařová ◽  
Jan Kazda ◽  
Petr Baranyk ◽  
Pavel Ryšánek

2015 ◽  
Vol 181 ◽  
pp. 52-59 ◽  
Author(s):  
Hui Li ◽  
Rihuan Cong ◽  
Tao Ren ◽  
Xiaokun Li ◽  
Changbao Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document