Greenhouse and field experiments with winter oilseed rape cultivars resistant to Plasmodiophora brassicae Wor.

2017 ◽  
Vol 92 ◽  
pp. 60-69 ◽  
Author(s):  
Veronika Řičařová ◽  
Jan Kazda ◽  
Petr Baranyk ◽  
Pavel Ryšánek
Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1364 ◽  
Author(s):  
Remigiusz Łukowiak ◽  
Witold Grzebisz

It has been assumed that the management of both soil and fertilizer N in winter oilseed rape (WOSR) is crucial for N accumulation in seeds (Nse) and yield. This hypothesis was evaluated based on field experiments conducted in 2008/09, 2009/10, 2010/11 seasons, each year at two sites, differing in soil fertility, including indigenous N (Ni) supply. The experimental factors consisted of two N fertilizers: N and NS, and four Nf rates: 0, 80, 120, 160 kg ha−1. Yield, as governed by site × Nf rate interaction, responded linearly to Nse at harvest. The maximum Nse (Nsemax), as evaluated by N input (Nin = Ni + Nf) to WOSR at spring regrowth, varied from 95 to 153 kg ha−1, and determined 80% of yield variability. The basic reason of site diversity in Nsemax was Ni efficiency, ranging from 46% to 70%, respectively. The second cause of Nse variability was a shortage of N supply from + 9.5 soil to −8.8 kg ha−1 to the growing seeds during the seed filling period (SFP). This N pool supports the N concentration in seeds, resulting in both seed density and a seed weight increase, finally leading to a yield increase.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1747
Author(s):  
Agnieszka Rutkowska ◽  
Piotr Skowron

Two factorial field experiments were carried out between 2003 and 2018 in the Experimental Stations in Eastern and Western Poland using four crop rotations with winter oilseed rape, winter wheat, maize and spring barley. The initial value of phosphorus (P) in Grabów soil was 69.8 mg P·kg−1 soil and in Baborówko soil it was 111.3 mg P·kg−1 soil (Egner-Riehm Double-Lactate DL). P fertilizer was added annually at 39 kg P·ha−1 under winter oilseed rape, 35 kg P·ha−1 under maize and 31 kg P·ha−1 under wheat and barley using superphosphate and nitrogen (N), which was added at five levels (30–250 kg N·ha−1) per year as ammonium nitrate in addition to controls with no added fertilizer. Through the several years of the experiment, P fertilizer had no effect on crop N use efficiency (NUE) nor crop productivity. There was significant soil P mining particularly in the high-N fertilizer trials causing a reduction in the content of available soil P by up to 35%. This work recommends that, based on soil P analysis, P fertilizer should not be added to high-P soils. This practice may continue uninterrupted for several years (16 in this case) until the excess soil P has been reduced. This mechanism of removal of “legacy” P from soil has major implications in reducing runoff P into the Baltic Sea drainage area and other water bodies.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 480 ◽  
Author(s):  
Anetta Siwik-Ziomek ◽  
Małgorzata Szczepanek

The present study has aimed at enhancing the insufficient knowledge of functional soil enzymes properties influenced by inorganic fertilization and biostimulant application to increase the uptake of nitrogen affecting the winter oilseed rape yield. Field experiments were conducted in Poland (53° N, 18° E) in Alfisol (USDA). In this experiment, the NPK rates applied were as follows: high 180 N, 70 P and 160 K 132 N (kg ha−1) or low 144 N, 35 P and 66 K (kg ha−1); fertilization with elemental S 36 or 0 (kg ha−1); and the seaweed biostimulant Kelpak was applied or there was no such treatment. Due to low NPK fertilization rates, the activity of dehydrogenases, peroxidases, and catalase increased in subsistent generative development stages from flowering to ripening. At the ripening stage, the activity of these enzymes, as well as nitroreductase activity, were inhibited by high NPK fertilizer rates. The seaweed biostimulant application and S fertilization increased N accumulation in plants of oilseed rape in generative development, by 16% and 13%, respectively, as compared with the lack of these treatments. The application of S increased the uptake of nitrogen in shoots and in whole oilseed rape plants only after application of higher rates of NPK.


1990 ◽  
Vol 45 (5) ◽  
pp. 478-481
Author(s):  
R. Hain ◽  
J. E. Thomzik

Abstract Triazine-resistant chloroplasts of the Canadian spring oilseed rape variety OAC Triton were transferred into four German winter oilseed rape lines and two cultivars of double-low quality by means of protoplast fusion. X-irradiation has been used to reduce the amount of nuclear D N A of the spring type cultivar and to promote cybrid formation. RFLP-analysis showed that some regenerants and their progeny carried both types of chloroplasts. In some instances regenerants and progeny containing mixtures of both chloroplasts not kept under selective conditions lost their triazine-resistant chloroplasts completely during further plant growth. Preliminary results of greenhouse and field experiments indicate that volunteer plants can be eliminated by application of 150-300 g/ha metribuzin (SencorR, Bayer AG) in a stand of triazine-resistant oilseed rape of double-low quality.


Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 2090-2099 ◽  
Author(s):  
Xiaorong Zheng ◽  
Annette Pfordt ◽  
Laxman Khatri ◽  
Alice Bisola Eseola ◽  
Antonia Wilch ◽  
...  

Oilseed rape, an important source of vegetable plant oil, is threatened by Verticillium longisporum, a soil-borne vascular fungal pathogen so far occurring in oilseed rape growing regions in Europe and Canada. Despite intensive research into V. longisporum in the last decades in controlled conditions, basic knowledge is still lacking about the time course of infection, temporal pattern of colonization, and disease development on field-grown plants. In this study, colonization of roots, stem bases, and stems with V. longisporum was followed by real-time PCR from the seedling until mature plant stages in 2-year field experiments with microsclerotia-infested plots and either spring-type or autumn-sown (winter-type) oilseed rape cultivars. The temporal pattern of plant colonization differed between greenhouse and field-grown oilseed rape and between spring- and winter-type plants in the field. Within 28 to 35 days, a continuous systemic colonization with V. longisporum was detected in roots and shoots of young plants in the greenhouse associated with significant stunting. In contrast, real-time PCR analysis of V. longisporum in field-grown winter oilseed rape plants displayed a strongly discontinuous colonization pattern with low fungal growth in roots during juvenile growth stages until flowering, whereas in spring oilseed rape, no root colonization was observed until early flowering stages. Hence, stem colonization with the pathogen required 6 months in winter oilseed rape and 1 month in spring oilseed rape from the time of initial root infection. The different patterns of stem colonization were related to soil temperature. Average soil temperatures in 5-cm depth during 7 days before sampling time points from 2 years of field experiments displayed a significant relationship with fungal colonization in the root. A climate chamber inoculation trial with soil temperature levels that varied from 6 to 18°C revealed a threshold temperature of >12°C in the soil to enable root invasion. This soil condition is reached in winter-type oilseed rape in the field in Germany either until the eight-leaf stage in early autumn or after pod stage in spring, whereas in spring-sown oilseed rape early root infection is delayed owing to the cool conditions during juvenile growth stages. The delay of stem colonization in field-grown oilseed rape may explain the lack of stunting as observed in the greenhouse and the previously reported inconsistent effects of V. longisporum on yield levels and seed quality, which were confirmed in this study.


2017 ◽  
Vol 53 (No. 3) ◽  
pp. 159-168
Author(s):  
Hlavjenka Vojtěch ◽  
Seidenglanz Marek ◽  
Dufek Aleš ◽  
Šefrová Hana

The amount and spatial distribution of plants afflicted with cabbage root maggot (Delia radicum; CRM) and clubroot (Plasmodiophora brassicae) in winter oilseed rape crops were assessed in the Olomouc region (Northern Moravia, Czech Republic) over the course of 2012–2014. A total of 16 commercial rape fields were included in the assessments. Plants with tumours showed a significantly lower (P < 0.001) level of infestation induced by CRM (24% of plants infested) compared to plants without tumours (37% of plants infested). According to a generalised linear mixed model, plants with thicker hypocotyls are predisposed to significantly higher levels (P < 0.001) of root surface damage induced by CRM. The correlation analysis indicates rather weak or intermediate levels of correlation between the two variables (hypocotyls thickness × root surface damage induced by CRM). Both CRM and clubroot symptomatic plants showed a significant tendency for aggregation in rape crops, but not in all cases. Distributions of CRM and clubroot symptomatic plants were either significantly spatially dissociated or not associated in crops. Ovipositing D. radicum females showed some tendency to avoid zones with higher number of plants infected by P. brassicae. Distributions of CRM and hypocotyl thickness levels were significantly spatially associated in crops in several cases.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1183 ◽  
Author(s):  
Yangyang Zhang ◽  
Piaopiao Lu ◽  
Tao Ren ◽  
Jianwei Lu ◽  
Li Wang

Cultivation of winter oilseed rape hybrids has been introduced as a promising solution to improve the nitrogen use efficiency (NUE) and to reduce the large N balance surpluses in this crop. To achieve a better understanding of the underlying physiological mechanisms, field experiments were conducted over two years to investigate the dynamics of growth and N capture in an oilseed rape hybrid and its parental lines under both low (0 kg ha−1) and high (180 kg ha−1) N supply. The results showed that the dynamic trajectories of crop growth and N capture could be accurately characterized by logistic equation using growing degree days as the independent variable. At both N rates, the oilseed rape hybrid outperformed the parental lines in seed yield and aboveground biomass accumulation, which was more closely associated with the longer duration (td) of the rapid growth period (RGP), than with the higher maximum growth rate (vm). N uptake was the main factor driving genotypic variation in seed yield, with an increasing importance of N utilization efficiency at high N supply. The hybrid had significantly higher N uptake than the parental lines at both low and high N supply, because of larger vm for N accumulation during the RGP, which may present a scope for genetically improving NUE in oilseed rape. High N application enhanced crop biomass production and N accumulation, as a result of prolonged td and larger vm during the RGP. The initiation of RGP for N accumulation occurred after overwinter period, which could not be accelerated by high N supply, suggesting rational distribution of N fertilizer with reduced basal dose. However, larger amounts in spring would be beneficial for a better synchronization to crop N demand with lower environmental risks.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 433
Author(s):  
Ann-Charlotte Wallenhammar ◽  
Zahra Saad Omer ◽  
Eva Edin ◽  
Anders Jonsson

Use of resistant cultivars is considered the most effective tool in managing clubroot. Three clubroot-resistant commercial winter oilseed rape (OSR) cultivars and a susceptible ‘Cultivar mix’ were evaluated for disease severity index (DSI) and yield performance in field soils, selected for varying abundance of natural inoculum of Plasmodiophora brassicae. Seven field trials were carried out during 2017–2019 in winter OSR crops, and comparative bioassays were performed in a growth chamber. Substantial variation in clubroot infection between years was observed in the field trials. For Cultivar mix, a negative correlation (y = −252.3ln(x) + 58,897.6) was found between inoculum density and seed yield in five trials, whereas no correlation was found for the resistant cultivars. In bioassays, Cultivar mix exhibited a significantly high correlation between DSIb and number of gene copies g−1 soil (R2 = 0.72). For resistant cvs., Mentor and Alister, correlation was R2 = 0.45 and 0.58, respectively, indicating that resistance was under pressure. In field trials, DSIf of the resistant cultivars was lower (<27). The recommendation is thus to use clubroot-resistant cultivars of OSR as part of Integrated Pest Management in situations where abundance of P. brassicae DNA exceeds 1300 gene copies g−1 soil.


1994 ◽  
Vol 122 (3) ◽  
pp. 393-404 ◽  
Author(s):  
R. J. Darby ◽  
D. P. Yeoman

SUMMARYIn the first of two series of experiments the effects of barley straw disposal by burning, chopping and spreading or baling and removing on winter oilseed rape were tested after seedbed preparation either by ploughing in the residue or incorporation in the soil by tine cultivation. These treatments were compared in four field experiments on silty clay loam soils at Rothamsted, UK from 1986 to 1989. The winter rape was either sown in late August or mid-September in seedbeds where either none or 50 kg N/ha had been applied.In the first season, August-sown rape was successfully established after tine cultivation but very dry conditions prevented seedbed preparation after ploughing, consequently all ploughed treatments were sown in September. Continuing dry conditions delayed emergence of the September-sown crop, the resultant small rape seedlings suffered substantial winter kill in some treatments during a period of abnormally low temperatures. Yield from the August-sown treatments was large (c. 40 t/ha) and showed no effect of straw disposal treatment or additional seedbed N. The yield of the September-sown crop was influenced by the amount of winter kill sustained; the smallest yields resulted from tine incorporation, and the largest after ploughing, where they approached those of the early sown crop.In the following three seasons more plants emerged from September than from August sowings. The application of seedbed N increased the plant population of the August-sown crop where the straw had been burnt. Plant losses over winter ranged from 15 to 20% and were unaffected by straw disposal treatment. There were significant differences in yield resulting from season and sowing date. Incorporating chopped straw by tine cultivation significantly decreased yield which, coupled with a lower oil content in the September-sown crop, gave a significantly smaller oil yield.In a second series of field experiments from 1987 to 1989, the effects of improving the timeliness of rape establishment after winter wheat by broadcasting rape seed into standing wheat was compared with conventional sowing after preparing a post-harvest seedbed. After cereal harvest, straw was disposed of either by baling and removing or chopping and spreading over the rape seed. The application of 50 kg N/ha to the stubble or seedbed was also tested, as was the effect of increasing the seed rate from 8 to 16 kg/ha in two seasons.There were always fewer plants established from broadcasting than from drilling. Generally there were fewer winter losses from broadcast seed than from drilled. Applying N to seedbed or stubble had no effect on plant population or survival except where 16 kg/ha seed was sown in 1989 and increased yield in two of the three seasons.In spite of a smaller plant population from broadcast seed, yields were often larger from broadcast than drilled treatments. On average broadcasting the seed and baling the straw gave the largest yield although this was significant only in 1989.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1701 ◽  
Author(s):  
Witold Grzebisz ◽  
Remigiusz Łukowiak ◽  
Karol Kotnis

Application of nitrogen (N) in contrastive chemical form changes availability of soil nutrients, affecting crop response. This hypothesis was evaluated based on field experiments conducted in 2015/16 and 2016/2017. The experiment consisted of three nitrogen fertilization systems: mineral-ammonium nitrate (AN) (M-NFS), organic-digestate (O-NFS), 2/3 digestate + 1/3 AN (OM-NFS), and N rates: 0, 80, 120, 160; 240 kg ha−1. The content of nitrogen nitrate (N-NO3) and available phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca) were determined at rosette, onset of flowering, and maturity of winter oilseed rape (WOSR) growth from three soil layers: 0.0–0.3, 0.3–0.6, 0.6–0.9 m. The optimum N rates were: 139, 171 and 210 kg ha−1 for the maximum yield of 3.616, 3.887, 4.195 t ha−1, for M-NFS, O-NFS, OM-NFS. The N-NO3 content at rosette of 150 kg ha−1 and its decrease to 48 kg ha−1 at the onset of flowering was the prerequisite of high yield. The key factor limiting yield in the M-NFS was the shortage of Ca, Mg, O-NFS—shortage of N-NO3. Plants in the OM-NFS were well-balanced due to a positive impact of the subsoil Mg and Ca on the N-NO3 content and productivity. The rosette stage was revealed as the cardinal for the correction of WOSR N nutritional status.


Sign in / Sign up

Export Citation Format

Share Document