Contrasting drought sensitivity and post-drought resilience among three co-occurring tree species in subtropical China

2019 ◽  
Vol 272-273 ◽  
pp. 55-68 ◽  
Author(s):  
Honglang Duan ◽  
Yiyong Li ◽  
Yue Xu ◽  
Shuangxi Zhou ◽  
Juan Liu ◽  
...  
Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 644 ◽  
Author(s):  
Pablo Casas-Gómez ◽  
Raúl Sánchez-Salguero ◽  
Pedro Ribera ◽  
Juan C. Linares

Extreme drought events are becoming increasingly frequent and extended, particularly in Mediterranean drought-prone regions. In this sense, atmospheric oscillations patterns, such as those represented by the North Atlantic Oscillation (NAO) index and the Westerly Index (WI) have been widely proven as reliable proxies of drought trends. Here, we used the Standardized Precipitation–Evapotranspiration Index (SPEI), as a reliable indicator of drought, to investigate the drought sensitivity of tree-ring width data (TRW) from several long-lived tree species (Abies borisii-regis, Abies cilicica, Abies pinsapo, Cedrus atlantica, Cedrus libanii, Pinus nigra, Pinus heldreichii). NAO and WI relations with TRW were also investigated in order to identify potential non-stationary responses among those drought proxies. Our temporal and spatial analyses support contrasting Mediterranean dipole patterns regarding the drought sensitivity of tree growth for each tree species. The spatial assessment of NAO and WI relationships regarding SPEI and TRW showed on average stronger correlations westward with non-stationary correlations between annual WI index and TRW in all species. The results indicate that the drought variability and the inferred drought-sensitive trees species (e.g., C. atlantica) are related to the NAO and the WI, showing that TRW is a feasible proxy to long-term reconstructions of Westerly Index (WI) variability in the Western Mediterranean region. Spatial variability of drought severity suggests a complex association between NAO and WI, likely modulated by an east–west Mediterranean climate dipole.


2011 ◽  
Vol 151 (12) ◽  
pp. 1632-1640 ◽  
Author(s):  
Daniel Scherrer ◽  
Martin Karl-Friedrich Bader ◽  
Christian Körner

Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 957 ◽  
Author(s):  
Liu ◽  
Zhu ◽  
Wang ◽  
Ma ◽  
Meng

Subtropical natural forests are unique due to their ecological and economic functions. However, most of these forests are highly degraded, which impairs the ability to provide ecological and economic benefits. Enrichment planting is an important approach to restore natural degraded forests. Species arrangement is of great importance to inform enrichment planting. Species association refers to the interrelationship of different species occupying a habitat and is a static description of the organic connection formed by the interaction of species. Species association, therefore, provides a scientific basis for species arrangement in enrichment planting. Additionally, because an old-growth forest is a climax community that has attained great age without significant disturbance, the species association in an old-growth forest can provide valuable information on the reference conditions for forest management. In this study, the species association between dominant tree species (including saplings and adult trees) was investigated in an old-growth forest in the Gutianshan National Nature Reserve in Zhejiang province in subtropical China. The objective of the study was to inform species arrangement for enrichment planting. The result showed that the overall species association exhibited a significant net positive association, indicating a dynamic balance of stable structure and species composition in the old-growth forest. Additionally, the pairwise species association was examined using the χ2 test, the Dice index, and Spearman’s rank correlation coefficient; significant positive and negative pairwise species associations were detected. Based on the species association and the light requirements of the tree species, an optimal species arrangement was determined to support enrichment planting for restoring natural degraded forests. It is expected that the results of this study will contribute to the restoration of natural degraded forests in subtropical China.


2013 ◽  
Vol 03 (04) ◽  
pp. 104-108 ◽  
Author(s):  
Xizi Zhang ◽  
Ping Zhou ◽  
Weiqiang Zhang ◽  
Weihua Zhang ◽  
Yongfeng Wang

2019 ◽  
Vol 215 ◽  
pp. 116899 ◽  
Author(s):  
Xiajie Yang ◽  
Yuanfan Ma ◽  
Guangyu Wang ◽  
Ernesto C. Alvarado ◽  
Mulualem Tigabu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document