Transmitted light as a tool to monitor tree leaf phenology and development applied to Quercus petraea

2019 ◽  
Vol 275 ◽  
pp. 37-46
Author(s):  
Thomas Perot ◽  
Philippe Balandier ◽  
Camille Couteau ◽  
Sandrine Perret ◽  
Vincent Seigner ◽  
...  
Revista CERES ◽  
2019 ◽  
Vol 66 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Ricardo Antonio Marenco ◽  
Francinete de Freitas Sousa ◽  
Marcilia Freitas de Oliveira

ABSTRACT Munguba (Pseudobombax munguba) is a tree often found in low-land forests of the Amazon region, and there is a paucity of data regarding its ecophysiology. The aim of this work was to determine photosynthetic rates and growth of munguba saplings and to describe leaf phenology of a munguba tree. In greenhouse-grown saplings, diameter growth, leaf expansion, photosynthesis and stomatal conductance were determined. To describe the relationship between photosynthesis and leaf expansion, regression analysis was used. It was also described the leaf phenology of an adult tree by observing foliage changes at one-week intervals for two years. The leaves completed their expansion in 18 days, and leaf greening was completed in 40 days. Photosynthesis positively correlated with leaf expansion, but there was no correlation between stomatal conductance and leaf growth. Growth in diameter was 1.8 mm month‒1. Relative growth rate was low, 0.010 g g-1 day-1. In the adult tree, leaf shedding was concentrated in July-August and by the second week of September the tree had already produced new leaves. Leaf longevity of munguba is about 11 months. It is hypothesized that leaf phenology of munguba is associated with the increased solar radiation of the dry season.


2010 ◽  
Vol 150 (7-8) ◽  
pp. 1026-1029 ◽  
Author(s):  
Masahiro Nakamura ◽  
Onno Muller ◽  
Shiori Tayanagi ◽  
Tatsuro Nakaji ◽  
Tsutom Hiura

2017 ◽  
Vol 24 ◽  
pp. 29-36
Author(s):  
Deepak B. Chand ◽  
Kanta Poudyal ◽  
P. K. Jha

An investigation has been done with the three Himalayan oak species at Phulchowki Hill Lalitpur Nepal to relate leaf phenology responses of trees to wood water properties. We recorded the wood water content, wood density, water in wood and leaf phenological patterns of three evergreen oak species (Quercus semecarpifolia, Quercus lamellosa and Quercus glauca) for 2 years. Our results revealed significant changes in leaf phenology within oak species between years, with shifts in leaf emergence, leaf damage and leaf senescence. Shifts in tree leaf phenology found in studied years suggest that the inter-annual and monthly variation in wood water properties could attribute to shift in tree leaf phenology.ECOPRINT 24: 29-36, 2017


Author(s):  
E. D. Salmon ◽  
J. C. Waters ◽  
C. Waterman-Storer

We have developed a multi-mode digital imaging system which acquires images with a cooled CCD camera (Figure 1). A multiple band pass dichromatic mirror and robotically controlled filter wheels provide wavelength selection for epi-fluorescence. Shutters select illumination either by epi-fluorescence or by transmitted light for phase contrast or DIC. Many of our experiments involve investigations of spindle assembly dynamics and chromosome movements in live cells or unfixed reconstituted preparations in vitro in which photodamage and phototoxicity are major concerns. As a consequence, a major factor in the design was optical efficiency: achieving the highest image quality with the least number of illumination photons. This principle applies to both epi-fluorescence and transmitted light imaging modes. In living cells and extracts, microtubules are visualized using X-rhodamine labeled tubulin. Photoactivation of C2CF-fluorescein labeled tubulin is used to locally mark microtubules in studies of microtubule dynamics and translocation. Chromosomes are labeled with DAPI or Hoechst DNA intercalating dyes.


Author(s):  
Santosh Bhattacharyya

Three dimensional microscopic structures play an important role in the understanding of various biological and physiological phenomena. Structural details of neurons, such as the density, caliber and volumes of dendrites, are important in understanding physiological and pathological functioning of nervous systems. Even so, many of the widely used stains in biology and neurophysiology are absorbing stains, such as horseradish peroxidase (HRP), and yet most of the iterative, constrained 3D optical image reconstruction research has concentrated on fluorescence microscopy. It is clear that iterative, constrained 3D image reconstruction methodologies are needed for transmitted light brightfield (TLB) imaging as well. One of the difficulties in doing so, in the past, has been in determining the point spread function of the system.We have been developing several variations of iterative, constrained image reconstruction algorithms for TLB imaging. Some of our early testing with one of them was reported previously. These algorithms are based on a linearized model of TLB imaging.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
James P. Cuda ◽  
Patricia Prade ◽  
Carey R. Minteer-Killian

In the late 1970s, Brazilian peppertree, Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), was targeted for classical biological control in Florida because its invasive properties (see Host Plants) are consistent with escape from natural enemies (Williams 1954), and there are no native Schinus spp. in North America. The lack of native close relatives should minimize the risk of damage to non-target plants from introduced biological control agents (Pemberton 2000). [...]


Sign in / Sign up

Export Citation Format

Share Document