scholarly journals Leaf phenology, growth and photosynthesis in Pseudobombax munguba (Malvaceae)

Revista CERES ◽  
2019 ◽  
Vol 66 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Ricardo Antonio Marenco ◽  
Francinete de Freitas Sousa ◽  
Marcilia Freitas de Oliveira

ABSTRACT Munguba (Pseudobombax munguba) is a tree often found in low-land forests of the Amazon region, and there is a paucity of data regarding its ecophysiology. The aim of this work was to determine photosynthetic rates and growth of munguba saplings and to describe leaf phenology of a munguba tree. In greenhouse-grown saplings, diameter growth, leaf expansion, photosynthesis and stomatal conductance were determined. To describe the relationship between photosynthesis and leaf expansion, regression analysis was used. It was also described the leaf phenology of an adult tree by observing foliage changes at one-week intervals for two years. The leaves completed their expansion in 18 days, and leaf greening was completed in 40 days. Photosynthesis positively correlated with leaf expansion, but there was no correlation between stomatal conductance and leaf growth. Growth in diameter was 1.8 mm month‒1. Relative growth rate was low, 0.010 g g-1 day-1. In the adult tree, leaf shedding was concentrated in July-August and by the second week of September the tree had already produced new leaves. Leaf longevity of munguba is about 11 months. It is hypothesized that leaf phenology of munguba is associated with the increased solar radiation of the dry season.

2003 ◽  
Vol 30 (1) ◽  
pp. 65 ◽  
Author(s):  
Fulai Liu ◽  
Christian Richardt Jensen ◽  
Mathias Neumann Andersen

Both hydraulic and chemical signals are probably important in regulating leaf growth and stomatal conductance of soybean (Glycine max L. Merr.) under drought stress. However, until now they have not been investigated concomitantly in this species. To explore this, a pot experiment in a temperature-regulated greenhouse was conducted, in which plants were subjected to progressive drought during early reproductive stages. Biophysical parameters, viz. relative leaf expansion rate, stomatal conductance, leaf turgor, leaf [ABA], xylem pH and xylem [ABA] were followed in control and stressed plants. Drought stress decreased relative leaf expansion rate, stomatal conductance and leaf turgor, whereas it increased leaf [ABA], xylem pH and xylem [ABA]. As soil dried, significant differences between water treatments for relative leaf expansion rate, stomatal conductance, leaf turgor, leaf [ABA], xylem pH and xylem [ABA] were observed at 14, 9, 14, 14, 14 and 9 d after imposition of stress, respectively. The relationships of relative values for relative leaf expansion rate, stomatal conductance, leaf turgor, leaf [ABA] and xylem pH to the fraction of transpirable soil water (FTSW) were well described by linear-plateau functions that allowed calculation of the soil-water thresholds at which processes in stressed plants began to diverge from well-watered controls. The soil-water threshold for stomatal conductance (0.64) was significantly higher than that for relative leaf expansion rate (0.29), xylem pH (0.28), leaf [ABA] (0.27) and leaf turgor (0.25). Relative xylem [ABA] increased, first linearly (when FTSW > 0.5) and then exponentially (when FTSW < 0.5) with decreasing FTSW. Relative stomatal conductance decreased exponentially with increasing relative xylem [ABA] (r2=0.98). Decreased stomatal conductance coincided with an increase in xylem [ABA] and occurred before any significant change of leaf turgor could be detected, indicating that chemical signals (seemingly root-originated ABA) control stomatal behaviour at moderate soil water deficits. Relative relative leaf expansion rate was linearly correlated with relative leaf turgor (r2=0.93), relative xylem pH (r2=0.97) and relative leaf [ABA] (r2=0.98), implying that both hydraulic and chemical signals were probably involved in regulation of leaf expansion at severe soil water deficits.


1991 ◽  
Vol 18 (2) ◽  
pp. 109 ◽  
Author(s):  
HM Rawson

Recent papers have proposed that rapid leaf growth in pasture grasses in spring is linked with the switch from vegetative to floral development. The paper examines this possible link in wheat using various photoperiodic treatments and isolines with different vernalisation requirements to induce floral initiation at several plant ages. The findings were as follows. (1) Induction of floral initiation by 3 long days at any plant age resulted in accelerated leaf expansion and relative growth rate of the whole plant. The effects were on shoots alone. (2) At equivalent plant age, when a winter isoline had no signs of double ridges, and so was apparently vegetative, and a spring isoline was clearly floral, whole-plant relative leaf expansion rates were not significantly different between isolines though tillering was much less in the spring line. (3) Photoperiodic treatments which were not sufficient to induce floral development irreversibly resulted in ephemeral increases in leaf expansion rate. These increases were followed by compensatory reductions. These data suggest that rapid leaf expansion and floral development are not linked, although both can be initiated by extended photoperiods rich in far-red radiation. The relevance of these findings to the selection of wheat genotypes with rapid early growth is discussed.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 425
Author(s):  
Noviana Budianti ◽  
Hiromi Mizunaga ◽  
Atsuhiro Iio

Unmanned aerial vehicles (UAV) provide a new platform for monitoring crown-level leaf phenology due to the ability to cover a vast area while offering branch-level image resolution. However, below-crown vegetation, e.g., understory vegetation, subcanopy trees, and the branches of neighboring trees, along with the multi-layered structure of the target crown may significantly reduce the accuracy of UAV-based estimates of crown leaf phenology. To test this hypothesis, we compared UAV-derived crown leaf phenology results against those based on ground observations at the individual tree scale for 19 deciduous broad-leaved species (55 individuals in total) characterized by different crown structures. The mean crown-level green chromatic coordinate derived from UAV images poorly explained inter- and intra-species variations in spring leaf phenology, most probably due to the consistently early leaf emergence in the below-crown vegetation. The start dates for leaf expansion and end dates for leaf falling could be estimated with an accuracy of <1-week when the influence of below-crown vegetation was removed from the UAV images through visual interpretation. However, a large discrepancy between the phenological metrics derived from UAV images and ground observations was still found for the end date of leaf expansion (EOE) and start date of leaf falling (SOF). Bayesian modeling revealed that the discrepancy for EOE increased as crown length and volume increased. The crown structure was not found to contribute to the discrepancy in SOF value. Our study provides evidence that crown structure is a pivotal factor to consider when using UAV photography to reliably estimate crown leaf phenology at the individual tree-scale.


Plant Disease ◽  
2005 ◽  
Vol 89 (7) ◽  
pp. 726-733 ◽  
Author(s):  
O. Carisse ◽  
H. A. McCartney ◽  
J. A. Gagnon ◽  
L. Brodeur

Botrytis leaf blight, caused by Botrytis squamosa, is a common and frequently damaging disease of onion crops, but the severity of epidemics varies widely from year to year. The disease is initiated and spread by airborne conidia. The relationship between airborne conidium concentration (ACC) and lesion development was studied in the field. A linear relationship was found between ACC and number of lesions per leaf: ACC values of 10 to 15 and 25 to 35 conidia m-3 were associated with 1 and 2.5 lesions per leaf, respectively. In 2000 and 2001, at three sites, four different criteria were used to start a fungicide spray program and their effect on epidemic development was compared with that of a grower's conventional schedule. The criteria were: at the fourth-true-leaf growth stage; according to an inoculum production index; when the ACC reached 10 to 15 conidia m-3; and when the ACC reached 25 to 35 conidia m-3. A nonsprayed control plot was included in the trial. Fungicide programs started when the ACC reached 10 to 15 conidia m-3 were as effective as the conventional program, but used fewer sprays. A fungicide spray program based on measurements of ACC and disease severity was evaluated in 2002 and 2003 in five and three commercial onion fields, respectively. At each site, half of the field was sprayed according to the grower's schedule and, in the other half, fungicide sprays were initiated when a threshold of 10 to 15 conidia m-3 or five lesions on the lower leaf (whichever came first) was reached. Overall, the number of fungicide applications was reduced by 75 and 56% in 2002 and 2003, respectively, without causing significant yield reduction. In both years, the reduction in number of fungicide applications was due mainly to the delay in initiation of the fungicide program.


1994 ◽  
Vol 30 (1) ◽  
pp. 1-16 ◽  
Author(s):  
B. Gail Smith ◽  
Paul J. Burgess ◽  
M. K. V. Carr

SummaryStomatal conductances (g) and photosynthetic rates (A) were monitored in six tea clones planted in a clone X irrigation experiment in the Southern Highlands of Tanzania. Measurements were made during the warm dry seasons of 1989 and 1990. There was no genotype X treatment interaction in the response in A or g of the various clones to irrigation. Irrigation increased A more than it increased g. Irrigation also increased the temperature optimum for photosynthesis and decreased photo-inhibition at high illuminance. Clones differed in g and A, and in the relationship between leaf temperature and A. The implications of these findings for clone selection are discussed.


1976 ◽  
Vol 86 (1) ◽  
pp. 83-91 ◽  
Author(s):  
M. A. Scaife ◽  
D. Jones

SUMMARYLettuce obeys the Shinozaki–Kira relationship in which the reciprocal of plant weight is linearly related to plant density. The intercept (a) represents the reciprocal of the weight of an isolated plant and the slope (b) represents the reciprocal of yield/unit area at high densities (the ‘ceiling yield’). This work examines the time course of (a) and (b) in an ‘ideal environment’ in which water and nutrients are non-limiting, and the light/temperature regime is constant.Two pot experiments are described: the first showed that the growth of isolated lettuces follows a logistic expression, which can therefore be substituted for a–1 in the Shinozaki-Kira equation. It was then hypothesized that b–1, the ‘ceiling yield’ would be constant over time. This was confirmed by the second experiment, giving the equationw–1t = w–10 e1–kt × w–1max × bd,in which wt is mean plant weight at time t, w0 and wmax are the initial and final weights of isolated plants, k is the early relative growth rate of such plants, b–1 is the constant ceiling yield, and d is the plant density.Two examples of the use of the equation are given: one shows how it predicts the interaction between seed size and plant density within a species (subterranean clover): the other illustrates how it can be used to explain why lettuce growth appears to be log-linear against time whereas cereal growth is more nearly just linear.


2007 ◽  
Vol 4 (4) ◽  
pp. 2593-2640 ◽  
Author(s):  
P. Harley ◽  
J. Greenberg ◽  
Ü. Niinemets ◽  
A. Guenther

Abstract. Methanol is found throughout the troposphere, with average concentrations second only to methane among atmospheric hydrocarbons. Proposed global methanol budgets are highly uncertain, but all agree that at least 60% of the total source arises from the terrestrial biosphere and primary emissions from plants. However, the magnitude of these emissions is also highly uncertain, and the environmental factors which control them require further elucidation. Using a temperature-controlled leaf enclosure, we measured methanol emissions from leaves of six plant species by proton transfer reaction mass spectrometry, with simultaneous measurements of leaf evapotranspiration and stomatal conductance. Rates of emission at 30°C varied from 0.3 to 38 μg g (dry mass)−1 h−1, with higher rates measured on young leaves, consistent with the production of methanol via pectin demethylation in expanding foliage. On average, emissions increased by a factor of 2.4 for each 10°C increase in leaf temperature. At constant temperature, emissions were also correlated with co-varying incident photosynthetic photon flux density and rates of stomatal conductance. The data were analyzed using the emission model developed by Niinemets and Reichstein (2003a, b), with the incorporation of a methanol production term that increased exponentially with temperature. It was concluded that control of emissions, during daytime, was shared by leaf temperature and stomatal conductance, although rates of production may also vary diurnally in response to variations in leaf growth rate in expanding leaves. The model, which generally provided reasonable simulations of the measured data during the day, significantly overestimated emissions on two sets of measurements made through the night, suggesting that production rates of methanol were reduced at night, perhaps because leaf growth was reduced or possibly through a direct effect of light on production. Although the short-term dynamics of methanol emissions can be successfully modeled only if stomatal conductance and compound solubility are taken into account, emissions on longer time scales will be determined by rates of methanol production, controls over which remain to be investigated.


1999 ◽  
Vol 47 (3) ◽  
pp. 147-152
Author(s):  
Shimon Lavee ◽  
Elizabeth Van Volkenburgh ◽  
Robert E. Cleland

The dependence of bean (Phaseolus vulgaris L. cv. Contender) leaf unfolding and expansion on light has been explored in intact and excised plants by varying the duration and timing of exposure to white light. Plants were grown for 10 days in dim red light (RL), and then some were excised. Both the intact and the excised plants were then exposed to varying white light (WL) treatments. In continuous WL, leaf unfolding began after 8 h, and was maximal after 36 h. For plants exposed to short WL treatments, as little as 2 h WL elicited partial unfolding when leaves were returned to RL and measured after 60 h. The relative rate of leaf elongation was most rapid during the first 2 h of WL and it rapidly decreased during the following 6–8 h. An 8 h exposure to WL followed by 52 h RL produced only a slightly lower leaf expansion than continuous WL for 32 h. Leaf elongation after 24 h constant WL irradiance was no longer light-dependent. The response of leaves on excised plants to WL was progressively less if treatment was delayed for 24 h after excision. In contrast, leaves on intact plants did not lose their ability to respond to light even after 48 h in the dark. The ability of leaves on intact or excised plants to elongate in RL decayed rapidly after day 10. These results indicate that light-stimulated leaf expansion in beans is mediated by some factors whose transport to the leaves is influenced by the presence of roots.


Sign in / Sign up

Export Citation Format

Share Document