Use of a plastic temperature response function reduces simulation error of crop maturity date by half

2020 ◽  
Vol 280 ◽  
pp. 107770
Author(s):  
Dingrong Wu ◽  
Peijuan Wang ◽  
Chaoyang Jiang ◽  
Jianying Yang ◽  
Zhiguo Huo ◽  
...  
1997 ◽  
Vol 34 (3) ◽  
pp. 331-353 ◽  
Author(s):  
Kan-ich Hayakawa ◽  
Ernesto B. Giannoni-Succar ◽  
Funan Huang ◽  
Liuming Zhou

1999 ◽  
Vol 79 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Y. W. Jame ◽  
H. W. Cutforth ◽  
J. T. Ritchie

The ability to predict leaf appearance would enhance our capability of modeling plant development and the rate of leaf area expansion. Many crop models use the constant thermal time for successive leaf tip appearance (which is often termed a phyllochron) as one model parameter to predict total number of leaves and date of anthesis. However, many researchers have found that phyllochron is not constant, but is dependent upon environment. The problem could be related to the simplified assumption that the daily leaf appearance rate is linearly related to temperature (and hence, phyllochron is constant, independent of temperature). In reality, the temperature response function for the development of a biological system is nonlinear. Thus, we fitted daily leaf appearance rate–temperature relationships obtained from growth room studies for both wheat (Triticum aestivum) and corn (Zea mays L.) to a nonlinear beta function with 0 °C as the base temperature and 42 °C as the upper critical temperature. The function described the relationships very well over the full range of temperatures for plant development. Other variables that are used to describe the duration and rate of leaf appearance, such as calendar days, phyllochron, and thermal rate of leaf appearance, are related to the daily leaf appearance rate, eliminating the need to develop various mathematical functions to independently describe the response of these variables to temperature. Because of the nonlinear nature of the temperature response function, we demonstrated that more accurate determinations of daily leaf appearance rates can be achieved by calculating rates over relatively short periods (i.e., hourly) and summing these to get the mean daily rate. Many environmental factors other than temperature also affect leaf appearance rate. However, once the proper temperature response function for leaf appearance rate is determined, it is much easier to determine when and how other factors are involved to modify the leaf appearance rate under a given environment.Key words: Temperature, leaf appearance rate, phyllochron, wheat, corn, beta function


2000 ◽  
Vol 30 (10) ◽  
pp. 1632-1645 ◽  
Author(s):  
Craig Loehle

Past simulation studies using a variety of models have generally agreed that climatic warming could have adverse effects on forests, including large-scale diebacks in some regions and drastic range shrinkages of many species. These effects should be most evident at biome transition zones. Other studies have pointed out, however, that past models have used a parabolic temperature response function that is based on geographic range limits rather than functional responses or data and that this parabolic model could exaggerate dieback effects. A new model is proposed for growing degree-days temperature response, which is asymptotic rather than parabolic. In this new model, tree height growth rate increases and then levels off with increasing growing degree-days. Species from more southern regions have a higher asymptote. It is shown that this model can be derived from the integration of a parabolic growth response to temperature over a year-long sinusoidal temperature regime. The SORTIE forest simulation model was modified to incorporate this response function. An ecotonal region was simulated under a warming scenario. The traditional parabolic temperature response model produced a wide zone of dieback following warming. In contrast, the new asymptotic response function produced no dieback and a stable ecotone that migrated north at <100 m/100 years.


2004 ◽  
Vol 34 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Nereu Augusto Streck

Developmental models can help growers to decide management practices, and to predict flowering and harvest time. Currently, a double exponential function is proposed as a generalized temperature response function for chrysanthemum. This function is not the most appropriate because its parameters lack biological meaning. The objective of this study was to develop a nonlinear temperature response function of chrysanthemum development that has parameters with biological meaning. The proposed function is a beta function with three parameters, the cardinal temperatures (minimum, optimum, and maximum temperatures for development), which were defined as 0, 22, and 35ºC. Published data of temperature response of development of three cultivars, which are independent data sets, were used to test the performance of the double exponential function and the beta function. Results showed that the beta function is better than the double exponential function to describe the temperature response of chrysanthemum development.


2004 ◽  
Vol 34 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Nereu Augusto Streck

Response functions used in crop simulation models are usually different for different physiological processes and cultivars, resulting in many unknown coefficients in the response functions. This is the case of African violet (Saintpaulia ionantha Wendl.), where a generalized temperature response for leaf growth and development has not been developed yet. The objective of this study was to develop a generalized nonlinear temperature response function for leaf appearance rate and leaf elongation rate in African violet. The nonlinear function has three coefficients, which are the cardinal temperatures (minimum, optimum, and maximum temperatures). These coefficients were defined as 10, 24, and 33ºC, based on the cardinal temperatures of other tropical species. Data of temperature response of leaf appearance rate and leaf elongation rate in African violet, cultivar Utah, at different light levels, which are from published research, were used as independent data for evaluating the performance of the nonlinear temperature response function. The results showed that a generalized nonlinear response function can be used to describe the temperature response of leaf growth and development in African violet. These results imply that a reduction in the number of input data required in African violet simulation models is possible.


1990 ◽  
Vol 50 (3) ◽  
pp. 159-171 ◽  
Author(s):  
H.W. Cutforth ◽  
C.F. Shaykewich

2003 ◽  
Vol 33 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Nereu Augusto Streck

Temperature is a major factor that affects metabolic processes in living organisms. Thermal time has been widely used to account for the effects of temperature on crop growth and development. However, the thermal time approach has been criticized because it assumes a linear relationship between the rate of crop growth or development and temperature. The response of the rate of crop growth and development to temperature is nonlinear. The objective of this study was to develop a generalized nonlinear temperature response function for some growth and developmental parameters in kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang & A. R. Ferguson). The nonlinear function has three coefficients (the cardinal temperatures), which were 0ºC, 25ºC, and 40ºC. Data of temperature response of relative growth rate, relative leaf area growth, net photosynthesis rate, and leaf appearance rate in kiwifruit (female cv. Hayward) at two light levels, which are from published research, were used as independent data for evaluating the performance of the nonlinear and the thermal time functions. The results showed that the generalized nonlinear response function is better than the thermal time approach, and the temperature response of several growth and developmental parameters in kiwifruit can be described with the same response function.


Sign in / Sign up

Export Citation Format

Share Document