Forest ecotone response to climate change: sensitivity to temperature response functional forms

2000 ◽  
Vol 30 (10) ◽  
pp. 1632-1645 ◽  
Author(s):  
Craig Loehle

Past simulation studies using a variety of models have generally agreed that climatic warming could have adverse effects on forests, including large-scale diebacks in some regions and drastic range shrinkages of many species. These effects should be most evident at biome transition zones. Other studies have pointed out, however, that past models have used a parabolic temperature response function that is based on geographic range limits rather than functional responses or data and that this parabolic model could exaggerate dieback effects. A new model is proposed for growing degree-days temperature response, which is asymptotic rather than parabolic. In this new model, tree height growth rate increases and then levels off with increasing growing degree-days. Species from more southern regions have a higher asymptote. It is shown that this model can be derived from the integration of a parabolic growth response to temperature over a year-long sinusoidal temperature regime. The SORTIE forest simulation model was modified to incorporate this response function. An ecotonal region was simulated under a warming scenario. The traditional parabolic temperature response model produced a wide zone of dieback following warming. In contrast, the new asymptotic response function produced no dieback and a stable ecotone that migrated north at <100 m/100 years.

1990 ◽  
Vol 70 (3) ◽  
pp. 493-497 ◽  
Author(s):  
H. N. HAYHOE ◽  
L. M. DWYER

Seed bed temperature is often the limiting environmental factor affecting corn (Zea mays L.) emergence, particularly in short-season production areas or when conservation tillage practices are employed. In this study, observations of the percentage emergence and seed bed growing degree days (base 10 °C) are used to assess functions which model the emergence response to temperature. Key words: Percentage emergence, growing degree days, log transformation, logistic function


2017 ◽  
Vol 47 (5) ◽  
pp. 636-647 ◽  
Author(s):  
Guillaume Jégo ◽  
François Thibodeau ◽  
René Morissette ◽  
Marianne Crépeau ◽  
Annie Claessens ◽  
...  

The ability to predict short-rotation coppice (SRC) willow productivity for a given region would be very helpful for large-scale deployment of this crop. The objectives of this study were to calibrate and validate the 3PG model for two commonly used clones (SX64 and SX67) and to provide yield potential estimates for 16 sites across Canada. One dataset for each clone, including leaf area index (LAI) and stem biomass, was used for calibrating parameters controlling leaf and stem growth. All other datasets, coming from eight different willow plantations, were used for model validation. Model performance was good in predicting stem biomass for the SX64 (normalized mean error (NME) = –8%, normalized root mean square error (NRMSE) = 22%) and SX67 (NME = –3%, NRMSE = 16%) clones. Predictions were more scattered for LAI, with NRMSE close to 35% and 33% and NME of 1% and 8% for SX64 and SX67, respectively. The simulation results show that the greatest yields were obtained with the three-year rotation for the SX67 clone, whereas a two-year rotation seemed to be more appropriate for the SX64 clone. The simulation results also show that growing degree-days had a significant impact on yield potential, which varied from 10.5 to 16.5 t DM·ha−1 for SX64 and from 7.5 to 11.5 t DM·ha−1 for SX67.


2009 ◽  
Vol 160 (5) ◽  
pp. 114-123 ◽  
Author(s):  
Daniel Otto ◽  
Sven Wagner ◽  
Peter Brang

The competitive pressure of naturally regenerated European beech (Fagus sylvatica) saplings on planted pedunculate oak (Quercus robur) was investigated on two 1.8 ha permanent plots near Habsburg and Murten (Switzerland). The plots were established with the aim to test methods of artificial oak regeneration after large-scale windthrow. On both plots, 80 oaks exposed to varying levels of competitive pressure from at most 10 neighbouring beech trees were selected. The height of each oak as well as stem and branch diameters were measured. The competitive pressure was assessed using Schütz's competition index, which is based on relative tree height, crown overlap and distance from competing neighbours. Oak trees growing without or with only slight competition from beech were equally tall, while oaks exposed to moderate to strong competition were smaller. A threshold value for the competition index was found above which oak height decreased strongly. The stem and branch diameters of the oaks started to decrease even if the competition from beech was slight, and decreased much further with more competition. The oak stems started to become more slender even with only slight competition from beech. On the moderately acid beech sites studied here, beech grow taller faster than oak. Thus where beech is competing with oak and the aim is to maintain the oak, competitive pressure on the oak must be reduced at an early stage. The degree of the intervention should, however, take the individual competitive interaction into account, with more intervention if the competition is strong.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
M. K. Singh ◽  
VINOD KUMAR ◽  
SHAMBHU PRASAD

A field experiment was carried out during the kharif of 2014 and 2015 to evaluate the yield potential, economics and thermal utilization in eleven finger millet varieties under the rainfed condition of the sub-humid environment of South Bihar of Eastern India. Results revealed that the significantly higher grain yield (20.41 q ha-1), net returns (Rs 25301) and B: C ratio (1.51) was with the finger millet variety ‘GPU 67’ but was being at par to ‘GPU28’and ‘RAU-8’, and significantly superior over remaining varieties. The highest heat units (1535.1oC day), helio-thermal units (7519.7oC day hours), phenothermal index (19.4 oC days day-1) were recorded with variety ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ and lowest in ‘VL 149’ at 50 % anthesis stage. Similarly, the highest growing degree days (2100 oC day), helio-thermal units (11035.8 oC day hours) were noted with ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ at maturity. The highest heat use efficiency (0.97 kg ha-1 oC day) and helio-thermal use efficiency (0.19 kg ha-1 oC day hour) were in ‘GPU 67’ followed by ‘VL 315’.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tânia Pinheiro ◽  
Ka Ying Florence Lip ◽  
Estéfani García-Ríos ◽  
Amparo Querol ◽  
José Teixeira ◽  
...  

AbstractElucidation of temperature tolerance mechanisms in yeast is essential for enhancing cellular robustness of strains, providing more economically and sustainable processes. We investigated the differential responses of three distinct Saccharomyces cerevisiae strains, an industrial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and an industrial bioethanol strain, Ethanol Red, grown at sub- and supra-optimal temperatures under chemostat conditions. We employed anaerobic conditions, mimicking the industrial processes. The proteomic profile of these strains in all conditions was performed by sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS), allowing the quantification of 997 proteins, data available via ProteomeXchange (PXD016567). Our analysis demonstrated that temperature responses differ between the strains; however, we also found some common responsive proteins, revealing that the response to temperature involves general stress and specific mechanisms. Overall, sub-optimal temperature conditions involved a higher remodeling of the proteome. The proteomic data evidenced that the cold response involves strong repression of translation-related proteins as well as induction of amino acid metabolism, together with components related to protein folding and degradation while, the high temperature response mainly recruits amino acid metabolism. Our study provides a global and thorough insight into how growth temperature affects the yeast proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Olivier Fradette ◽  
Charles Marty ◽  
Pascal Tremblay ◽  
Daniel Lord ◽  
Jean-François Boucher

Allometric equations use easily measurable biometric variables to determine the aboveground and belowground biomasses of trees. Equations produced for estimating the biomass within Canadian forests at a large scale have not yet been validated for eastern Canadian boreal open woodlands (OWs), where trees experience particular environmental conditions. In this study, we harvested 167 trees from seven boreal OWs in Quebec, Canada for biomass and allometric measurements. These data show that Canadian national equations accurately predict the whole aboveground biomass for both black spruce and jack pine trees, but underestimated branches biomass, possibly owing to a particular tree morphology in OWs relative to closed-canopy stands. We therefore developed ad hoc allometric equations based on three power models including diameter at breast height (DBH) alone or in combination with tree height (H) as allometric variables. Our results show that although the inclusion of H in the model yields better fits for most tree compartments in both species, the difference is minor and does not markedly affect biomass C stocks at the stand level. Using these newly developed equations, we found that carbon stocks in afforested OWs varied markedly among sites owing to differences in tree growth and species. Nine years after afforestation, jack pine plantations had accumulated about five times more carbon than black spruce plantations (0.14 vs. 0.80 t C·ha−1), highlighting the much larger potential of jack pine for OW afforestation projects in this environment.


2019 ◽  
Vol 33 (6) ◽  
pp. 800-807 ◽  
Author(s):  
Graham W. Charles ◽  
Brian M. Sindel ◽  
Annette L. Cowie ◽  
Oliver G. G. Knox

AbstractField studies were conducted over six seasons to determine the critical period for weed control (CPWC) in high-yielding cotton, using common sunflower as a mimic weed. Common sunflower was planted with or after cotton emergence at densities of 1, 2, 5, 10, 20, and 50 plants m−2. Common sunflower was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 growing degree days (GDD) after planting. Season-long interference resulted in no harvestable cotton at densities of five or more common sunflower plants m−2. High levels of intraspecific and interspecific competition occurred at the highest weed densities, with increases in weed biomass and reductions in crop yield not proportional to the changes in weed density. Using a 5% yield-loss threshold, the CPWC extended from 43 to 615 GDD, and 20 to 1,512 GDD for one and 50 common sunflower plants m−2, respectively. These results highlight the high level of weed control required in high-yielding cotton to ensure crop losses do not exceed the cost of control.


Sign in / Sign up

Export Citation Format

Share Document