Improved forecasting of coffee leaf rust by qualitative modeling: Design and expert validation of the ExpeRoya model

2022 ◽  
Vol 197 ◽  
pp. 103352
Author(s):  
Natacha Motisi ◽  
Pierre Bommel ◽  
Grégoire Leclerc ◽  
Marie-Hélène Robin ◽  
Jean-Noël Aubertot ◽  
...  
IMA Fungus ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adans A. Colmán ◽  
Harry C. Evans ◽  
Sara S. Salcedo-Sarmiento ◽  
Uwe Braun ◽  
Kifle Belachew-Bekele ◽  
...  

AbstractDigitopodium hemileiae was described originally in 1930 as Cladosporium hemileiae; growing as a mycoparasite of the coffee leaf rust (CLR), Hemileia vastatrix, in a sample of diseased leaves of Coffea canephora collected in the Democratic Republic of Congo. No cultures from this material exist. More recently, the type material was re-examined and, based on morphological features, considered to be incorrectly placed in Cladosporium. The new genus Digitopodium was erected to accommodate this species. Interest in fungal antagonists of H. vastarix, as potential biocontrol agents of CLR, led to comprehensive surveys for mycoparasites, both in the African centre of origin of the rust, as well as in its South American exotic range. Among the rust specimens from Ethiopia, one was found to be colonized by a fungus congeneric with, and similar to, D. hemileiae. Pure cultures obtained from the Ethiopian material enabled a molecular study and for its phylogenetic position to be elucidated, based on DNA sequence data from the ITS and LSU regions. Molecular data showed that two members of the recently erected genus Hyalocladosporiella (Herpotrichiellaceae: Chaetothyriales) are congeneric with Digitopodium from Ethiopia and morphologically similar to both D. hemileiae and the two Ethiopian isolates. These isolates were found to be morphologically and genetically identical to H. tectonae, described previously from Brazil. Thus, species of Hyalocladosporiella are re-allocated to Digitopodium here; including D. tectonae, and a novel species, D. canescens, recently found in Brazil growing as a mycoparasite of Puccinia thaliae. The potential use of D. hemileiae and D. tectonae for classical biological control of CLR is discussed.


2013 ◽  
Vol 38 (6) ◽  
pp. 547-551 ◽  
Author(s):  
Ueder Pedro Lopes ◽  
Laércio Zambolim ◽  
Pedro Nery Souza Neto ◽  
Antônio Fernando Souza ◽  
Alexandre Sandri Capucho ◽  
...  

2019 ◽  
Author(s):  
Geleta Dugassa Barka ◽  
Eveline Teixeira Caixeta ◽  
Sávio Siqueira Ferreira ◽  
Laércio Zambolim

AbstractPhysiology-based differentiation of SH genes and Hemileia vastatrix races is the principal method employed for the characterization of coffee leaf rust resistance. Based on the gene-for-gene theory, nine major rust resistance genes (SH1-9) have been proposed. However, these genes have not been characterized at the molecular level. Consequently, the lack of molecular data regarding rust resistance genes or candidates is a major bottleneck in coffee breeding. To address this issue, we screened a BAC library with resistance gene analogs (RGAs), identified RGAs, characterized and explored for any SH related candidate genes. Herein, we report the identification and characterization of a gene (gene 11), which shares conserved sequences with other SH genes and displays a characteristic polymorphic allele conferring different resistance phenotypes. Furthermore, comparative analysis of the two RGAs belonging to CC-NBS-LRR revealed more intense diversifying selection in tomato and grape genomes than in coffee. For the first time, the present study has unveiled novel insights into the molecular nature of the SH genes, thereby opening new avenues for coffee rust resistance molecular breeding. The characterized candidate RGA is of particular importance for further biological function analysis in coffee.


2021 ◽  
Vol 748 (1) ◽  
pp. 012002
Author(s):  
Sabam Malau ◽  
Albiner Siagian ◽  
Maria Rumondang Sihotang

Abstract Coffee is now experiencing a serious threat from fungus Hemileia vastatrix which caused epidemic of rust disease in America, Africa, and Asia. As solution, the use of resistant cultivars is the best way. However, interaction between genotype and environment can change the rank of genotypes that shows instability of these genotypes against leaf rust. Purpose of this research was to study stability of genotypes of Arabica coffee against coffee leaf rust. A field experiment was arranged as factorial randomized complete block design with 2 factors (genotypes and climate zones) with three replication. The observed parameters were branch rust incidence, leaf rust incidence, and leaf rust severity. This research result showed significant genotype x environment interaction in all variables. Length of dry season is the most important factor affecting coffee leaf rust because it had the highest correlation coefficient with leaf rust severity (r = 0.662**). Less length of dry season should be the first criteria for selection of coffee farms. The most desired genotype was G7 which performed low leaf rust severity (7.71%) and had a stable resistance indicated by the same leaf rust severity in all environments and 6 SMg. Due to the significant interaction between genotypes and the environment, the genotype to be planted in a region must be tested in that region first.


2019 ◽  
Vol 44 (3) ◽  
pp. 244-250 ◽  
Author(s):  
Gerba Daba ◽  
Kenny Helsen ◽  
Gezahegn Berecha ◽  
Bart Lievens ◽  
Adugna Debela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document