potassium silicate
Recently Published Documents


TOTAL DOCUMENTS

357
(FIVE YEARS 116)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 319 ◽  
pp. 126091
Author(s):  
Linlin Zhao ◽  
Xianwei Ma ◽  
Shuaiqi Song ◽  
Peibo You ◽  
Hairong Wu

2022 ◽  
Vol 321 ◽  
pp. 126305
Author(s):  
D.M. González-García ◽  
L. Téllez-Jurado ◽  
F.J. Jiménez-Álvarez ◽  
L. Zarazua-Villalobos ◽  
H. Balmori-Ramírez

2021 ◽  
Vol 50 (4) ◽  
pp. 1127-1132
Author(s):  
Wubo Li ◽  
Meng Li ◽  
Yunshuo Xu ◽  
Yan Shi

Effects of different dosages of potassium silicate fertilizer on photosynthetic characteristics and yield of winter wheat under field conditions were studied. Four different dosages: 0, 45, 90 and 135kg/ha were applied. Results showed that the chlorophyll content, net photosynthetic rate of wheat flag leaf firstly increased and then decreased with the increase of levels of potassium silicate fertilizer. By the change of SPAD values after flowering, when the application of potassium silicate fertilizer was 90 kg/ha, the existence time of chlorophyll in flag leaf was significantly long, and the net photosynthetic rate was significantly increased. The 1000-grain weight of winter wheat significantly increased and the yield the highest. Overall, when the applied amount of potassium silicate fertilizer was 90 kg/ha, the performances of winter wheat were best. Bangladesh J. Bot. 50(4): 1127-1132, 2021 (December)


2021 ◽  
pp. 1-8
Author(s):  
Leonardo Camata ◽  
Diana Gonçalves Costa ◽  
Dalila da Costa Gonçalves ◽  
Ramon Amaro de Sales ◽  
Evandro Chaves de Oliveira ◽  
...  

2021 ◽  
pp. 103603
Author(s):  
Keverson G. de Oliveira ◽  
Ramoni R.S. de Lima ◽  
Clenildo de Longe ◽  
Tatiana de C. Bicudo ◽  
Rafael V. Sales ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1481
Author(s):  
Wenbo Li ◽  
Chenghao Xu ◽  
Ameng Xie ◽  
Ken Chen ◽  
Yingfei Yang ◽  
...  

Interfacial reaction between quartz and potassium silicate glass was studied at both 900 °C and 1000 °C. The results showed that no phase transformation was observed for the pure quartz at 900 °C or 1000 °C. Instead, for quartz particles in K2O-SiO2 glass, the transformation from quartz to cristobalite occurred at the quartz/glass interface at first, and then the cristobalite crystals transformed into tridymite. The tridymite formed at the interface between particles and glass became the site of heterogeneous nucleation, which induces plenty of tridymite precipitation in potassium silicate glass. The influential mechanism of firing temperature and size of quartz particles on transformation rate was discussed.


2021 ◽  
Vol 65 ◽  
pp. 323-332
Author(s):  
L.-J. ZHANG ◽  
E.H.M. CISSE ◽  
Y.-J. PU ◽  
L.-F. MIAO ◽  
L.-S. XIANG ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2440
Author(s):  
Qamar uz Zaman ◽  
Muhammad Rashid ◽  
Rab Nawaz ◽  
Afzal Hussain ◽  
Kamran Ashraf ◽  
...  

Soil contamination with toxic cadmium (Cd) is becoming a serious global problem and poses a key hazard to environments and the health of human beings worldwide. The present study investigated the effects of foliar applications of three forms of silicate chemicals (calcium silicate, sodium silicate, and potassium silicate) at four rates (0.25%, 0.5%, 0.75%, and 1.0%) at tillering stage on rice growth and the accumulation of Cd under Cd stress (30 mg kg−1). The results showed that Cd stress reduced the yield-related traits and enlarged Cd contents in different rice organs. The leaf gas exchange attributes and yield traits were enhanced, and the Cd accumulation and bioaccumulation factor in rice organs were reduced, especially in grains, through silicon application. In shoots, roots, and grains, foliar spray of Si reduced Cd contents by 40.3%, 50.7%, and 47.9%, respectively. The effectiveness of silicate compounds in reducing Cd toxicity varied with the kind of chemicals and doses of foliar applications. Foliar application of potassium silicate, at a rate of 0.5%, at tillering stage, showed the best effectiveness in improving grain yield, while mitigating Cd accumulation in rice grains. The outcome of this study provides a promising practicable approach in alleviating Cd toxicity in rice and preventing the entrance of Cd into the food chain.


2021 ◽  
Vol 117 (3) ◽  
pp. 1
Author(s):  
Fadl Abdelhamid HASHEM ◽  
Rasha M. EL-MORSHEDY ◽  
Tarek M. YOUNIS ◽  
Mohamed A. A. ABDRABBO

<p>Temperature rise is one of the most challenging climate change impacts that increase the intensity of heat stress. In this investigated the production of celery (<em>Apium graveolens</em> var. <em>rapaceum </em>F1 hybrid)) was tested during the late season. The experiment was carried out during the two successive summer seasons of 2019 and 2020 in Giza Governorate, Egypt. The experimental design is a split-plot, the main plots consist of three low tunnel cover treatments, and three spray treatments with three replicates in sub-main plots. Results showed that the use of white net cover gave the highest vegetative growth and yield followed by the black net. Values of plant yield were 951, 765, and 660 g/plant for white, black and without cover, respectively, in the first season. The foliar application of 3 mM of potassium silicate produced the highest vegetative growth and yield compared to the control treatment. Referring to the effect of spray foliar application of potassium silicate on yield 1.5 mM (S1), 3 mM (S2), and control were 892, 795, and 689 g/plant in the first season, respectively. The best combination that delivered the highest vegetative growth and yield was a cover low tunnel with a white net combined with S2 foliar application.</p>


Sign in / Sign up

Export Citation Format

Share Document