Assessing the effectiveness of split fertilization and cover crop cultivation in order to conserve soil and water resources and improve crop productivity

2016 ◽  
Vol 163 ◽  
pp. 305-318 ◽  
Author(s):  
Ganga Ram Maharjan ◽  
Marianne Ruidisch ◽  
Christopher L. Shope ◽  
Kwanghun Choi ◽  
Bernd Huwe ◽  
...  
1991 ◽  
Vol 20 (2) ◽  
pp. 162-165 ◽  
Author(s):  
Peter M. Groffman ◽  
William R. Wright ◽  
Arthur J. Gold ◽  
Peter V. August ◽  
Charles G. McKiel

Agropedology ◽  
2019 ◽  
Vol 28 (2) ◽  
Author(s):  
S. V. Shejale ◽  
◽  
S. B. Nandgude ◽  
S. S. Salunkhe ◽  
M. A. Phadtare ◽  
...  

Present research work was carried out on soil erosion and crop productivity loss in Palghar and Thane districts. The study also describes tolerable soil loss and relationship between top-soil loss and yield loss. The estimated average annual soil loss was 40.45 t ha-1yr-1 before adoption of the soil and water conservation measures (by USLE method) and estimated average tolerable soil loss was 9.36 t ha-1 yr-1, for Palghar district. Similarly, for Thane district the estimated average annual soil loss and tolerable soil loss were found to be 35.89 t ha-1 yr-1 and 9.61 t ha-1 yr-1, respectively for Thane district. The estimated average conservation practice factor (P) factors were obtained as 0.32 for Palghar district and 0.30 for Thane district to bring the soil loss below the tolerable limit. After adoption of soil and water conservation measures, the estimated soil loss were 9.02 t ha-1 yr-1 and 9.38 t ha-1 yr-1 for Palghar and Thane districts, respectively.


2021 ◽  
Author(s):  
Daniel Müller ◽  
Andrey Dara ◽  
Christopher Krause ◽  
Mayra Daniela Peña-Guerrero ◽  
Tillman Schmitz ◽  
...  

<p>Water withdrawals for irrigated crop production constitute the largest global consumer of blue water resources. Monitoring the dynamics of irrigated crop cultivation allows to track changes in water consumption of irrigated cropping, which is particularly paramount in water-scarce arid and semi-arid areas. We analyzed changes in irrigated crop cultivation along with occurrence of hydrological droughts for the Amu Darya river basin of Central Asia (534,700 km<sup>2</sup>), once the largest tributary river to the Aral Sea before large-scale irrigation projects have grossly reduced the amount of water that reaches the river delta. We used annual and seasonal spectral-temporal metrics derived from Landsat time series to quantify the three predominant cropping practices in the region (first season, second season, double cropping) for every year between 1988 and 2020. We further derived unbiased area estimates for the cropping classes at the province level based on a stratified random sample (n=2,779). Our results reveal a small yet steady decrease in irrigated second season cultivation across the basin. Regionally, we observed a gradual move away from cotton monocropping in response to the policy changes that were instigated since the mid-1990s. We compared the observed cropping dynamics to the occurrence of hydrological droughts, i.e., periods with inadequate water resources for irrigation. We find that areas with higher drought risks rely more on irrigation of the second season crops. Overall, our analysis provides the first fine-scale, annual crop type maps for the irrigated areas in the Amu Darya basin. The results shed light on how institutional changes and hydroclimatic factors that affect land-use decision-making, and thus the dynamics of crop type composition, in the vast irrigated areas of Central Asia.</p>


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 824 ◽  
Author(s):  
Artemi Cerdà ◽  
Oren Ackermann ◽  
Enric Terol ◽  
Jesús Rodrigo-Comino

Due to the reduction in the prices of oranges on the market and social changes such as the ageing of the population, traditional orange plantation abandonment in the Mediterranean is taking place. Previous research on land abandonment impact on soil and water resources has focused on rainfed agriculture abandonment, but there is no research on irrigated land abandonment. In the Valencia Region—the largest producer of oranges in Europe—abandonment is resulting in a quick vegetation recovery and changes in soil properties, and then in water erosion. Therefore, we performed rainfall simulation experiments (0.28 m2; 38.8 mm h−1) to determine the soil losses in naveline orange plantations with different ages of abandonment (1, 2, 3, 5, 7 and 10 years of abandonment) which will allow for an understanding of the temporal changes in soil and water losses after abandonment. Moreover, these results were also compared with an active plantation (0). The results show that the soils of the active orange plantations have higher runoff discharges and higher erosion rates due to the use of herbicides than the plots after abandonment. Once the soil is abandoned for one year, the plant recovery reaches 33% of the cover and the erosion rate drops one order of magnitude. This is related to the delay in the runoff generation and the increase in infiltration rates. After 2, 3, 5, 7 and 10 years, the soil reduced bulk density, increase in organic matter, plant cover, and soil erosion rates were found negligible. We conclude that the abandonment of orange plantations reduces soil and water losses and can serve as a nature-based solution to restore the soil services, goods, and resources. The reduction in the soil losses was exponential (from 607.4 g m−2 in the active plot to 7.1 g m−2 in the 10-year abandoned one) but the water losses were linear (from 77.2 in active plantations till 12.8% in the 10-year abandoned ones).


Sign in / Sign up

Export Citation Format

Share Document