Effects of precision conservation agriculture in a maize-wheat-mungbean rotation on crop yield, water-use and radiation conversion under a semiarid agro-ecosystem

2017 ◽  
Vol 192 ◽  
pp. 306-319 ◽  
Author(s):  
C.M. Parihar ◽  
S.L. Jat ◽  
A.K. Singh ◽  
A. Ghosh ◽  
N.S. Rathore ◽  
...  
2020 ◽  
Vol 12 (15) ◽  
pp. 5989 ◽  
Author(s):  
Sisay A. Belay ◽  
Tewodros T. Assefa ◽  
P. V. Vara Prasad ◽  
Petra Schmitter ◽  
Abeyou W. Worqlul ◽  
...  

Smallholder agriculture constitutes the main source of livelihood for the Ethiopian rural community. However, soil degradation and uneven distribution of rainfall have threatened agriculture at present. This study is aimed at investigating the impacts of conservation agriculture on irrigation water use, nutrient availability in the root zone, and crop yield under supplementary irrigation. In this study, conservation agriculture (CA), which includes minimum soil disturbance, grass mulch cover, and crop rotation, was practiced and compared with conventional tillage (CT). We used two years’ (2018 and 2019) experimental data under paired-t design in the production of a local variety green pepper (Capsicum annuum L.). The results showed that CA practices significantly (α = 0.05) reduced irrigation water use (13% to 29%) and runoff (29% to 51%) while it increased percolated water in the root zone (27% to 50%) when compared with CT practices under the supplementary irrigation phase. In addition, CA significantly decreased NO3-N in the leachate (14% to 44%) and in the runoff (about 100%), while PO4-P significantly decreased in the leachate (33% to 50%) and in the runoff (16%) when compared with CT. Similarly, CA decreased the NO3-N load in the leachate and in the runoff, while the PO4-P load increased in the leachate but decreased in the runoff. The yield return that was achieved under CA treatment was 30% higher in 2018 and 10% higher in 2019 when compared with the CT. This research improves our understanding of water and nutrient dynamics in green pepper grown under CA and CT. Use of CA provides opportunities to optimize water use by decreasing irrigation water requirements and optimize nutrient use by decreasing nutrient losses through the runoff and leaching.


Crop Science ◽  
2002 ◽  
Vol 42 (1) ◽  
pp. 122 ◽  
Author(s):  
A. G. Condon ◽  
R. A. Richards ◽  
G. J. Rebetzke ◽  
G. D. Farquhar

2017 ◽  
Author(s):  
◽  
Akinola Mayowa Ikudayisi

Water is an essential natural resource for human existence and survival on the earth. South Africa, a water stressed country, allocates a high percentage of its available consumptive water use to irrigation. Therefore, it is necessary that we optimize water use in order to enhance food security. This study presents the development of mathematical models for irrigation scheduling of crops, optimal irrigation water release and crop yields in Vaal Harts irrigation scheme (VIS) of South Africa. For efficient irrigation water management, an accurate estimation of reference evapotranspiration (ETₒ) should be carried out. However, due to non-availability of enough historical data for the study area, mathematical models were developed to estimate ETₒ. A 20-year monthly meteorological data was collected and analysed using two data–driven modeling techniques namely principal component analysis (PCA) and adaptive neuro-fuzzy inference systems (ANFIS). Furthermore, an artificial neural network (ANN) model was developed for real time prediction of future ETₒ for the study area. The real time irrigation scheduling of potatoes was developed using a crop growth simulation model called CROPWAT. It was used to determine the crop water productivity (CWP), which is a determinant of the relationship between water applied and crop yield. Finally, a new and novel evolutionary multi-objective optimization algorithm called combined Pareto multi-objective differential evolution (CPMDE) was applied to optimize irrigation water use and crop yield on the VIS farmland. The net irrigation benefit, land area and irrigation water use of maize, potatoes and groundnut were optimized. Results obtained show that ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity have less significance on the value of ETₒ. Also, ANN models with one hidden layer showed better predictive performance compared with other considered configurations. A 5-day time step irrigation schedule data and graphs showing the crop water requirements and irrigation water requirements was generated. This would enable farmers know when, where, and how much water to apply to a given farmland. Finally, the employed CPMDE optimization algorithm produced a set of non-dominated Pareto optimal solutions. The best solution suggests that maize, groundnut and potatoes should be planted on 403543.44 m2, 181542.00 m2 and 352876.05 m2areas of land respectively. This solution generates a total net benefit of ZAR 767,961.49, total planting area of 937961.49 m2 and irrigation water volume of 391,061.52 m3. Among the three crops optimized, maize has the greatest land area, followed by potatoes and groundnut. This shows that maize is more profitable than potatoes and groundnut with respect to crop yield and water use in the study area.


2020 ◽  
Vol 12 (10) ◽  
pp. 4125 ◽  
Author(s):  
Qiang Liu ◽  
Hongwei Xu ◽  
Xingmin Mu ◽  
Guangju Zhao ◽  
Peng Gao ◽  
...  

Soil water and nutrients are major factors limiting crop productivity. In the present study, soil water use efficiency (WUE) and crop yield of millet and soybean were investigated under nine fertilization regimes (no nitrogen (N) and no phosphorus (P) (CK), 120 kg ha−1 N and no P (N1P0), 240 kg ha−1 N and no P (N2P0), 45 kg ha−1 P and no N (N0P1), 90 kg ha−1 P and no N (N0P2), 120 kg ha−1 N and 45 kg ha−1 P (N1P1), 240 kg ha−1 N and 45 kg ha−1 P (N2P1), 120 kg ha−1 N and 90 kg ha−1 P (N1P2), 240 kg ha−1 N and 90 kg ha−1 P (N2P2)) in the Loess Plateau, China. We conducted fertilization experiments in two cultivation seasons and collected soil nutrient, water use, and crop yield data. Combined N and P fertilization resulted in the greatest increase in crop yield and WUE, followed by the single P fertilizer application, and single N fertilizer application. The control treatment, which consisted of neither P nor N fertilizer application, had the least effect on crop yield. The combined N and P fertilization increased soil organic matter (SOM) and soil total N, while soil water consumption increased in all treatments. SOM and total N content increased significantly when compared to the control conditions, by 27.1–81.3%, and 301.3–669.2%, respectively, only under combined N and P application. The combined N and P application promoted the formation of a favorable soil aggregate structure and improved soil microbial activity, which accelerated fertilizer use, and enhanced the capacity of soil to maintain fertilizer supply. Crop yield increased significantly in all treatments when compared to the control conditions, with soybean and millet yields increasing by 82.5–560.1% and 55–490.8%, respectively. The combined application of N and P fertilizers increased soil water consumption, improved soil WUE, and satisfied crop growth and development requirements. In addition, soil WUE was significantly positively correlated with crop yield. Our results provide a scientific basis for rational crop fertilization in semi-arid areas on the Loess Plateau.


2020 ◽  
Vol 202 ◽  
pp. 104676
Author(s):  
Xiaobo Gu ◽  
Huanjie Cai ◽  
Heng Fang ◽  
Yupeng Li ◽  
Pengpeng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document