scholarly journals Combining machine learning, space-time cloud restoration and phenology for farm-level wheat yield prediction

Author(s):  
Andualem Aklilu Tesfaye ◽  
Daniel Osgood ◽  
Berhane Gessesse Aweke
2021 ◽  
Author(s):  
Amit Kumar Srivast ◽  
Nima Safaei ◽  
Saeed Khaki ◽  
Gina Lopez ◽  
Wenzhi Zeng ◽  
...  

Abstract Crop yield forecasting depends on many interactive factors including crop genotype, weather, soil, and management practices. This study analyzes the performance of machine learning and deep learning methods for winter wheat yield prediction using extensive datasets of weather, soil, and crop phenology. We propose a convolutional neural network (CNN) which uses the 1-dimentional convolution operation to capture the time dependencies of environmental variables. The proposed CNN, evaluated along with other machine learning models for winter wheat yield prediction in Germany, outperformed all other models tested. To address the seasonality, weekly features were used that explicitly take soil moisture and meteorological events into account. Our results indicated that nonlinear models such as deep learning models and XGboost are more effective in finding the functional relationship between the crop yield and input data compared to linear models and deep neural networks had a higher prediction accuracy than XGboost. One of the main limitations of machine learning models is their black box property. Therefore, we moved beyond prediction and performed feature selection, as it provides key results towards explaining yield prediction (variable importance by time). As such, our study indicates which variables have the most significant effect on winter wheat yield.


2016 ◽  
Vol 121 ◽  
pp. 57-65 ◽  
Author(s):  
X.E. Pantazi ◽  
D. Moshou ◽  
T. Alexandridis ◽  
R.L. Whetton ◽  
A.M. Mouazen

2020 ◽  
Vol 12 (2) ◽  
pp. 236 ◽  
Author(s):  
Jichong Han ◽  
Zhao Zhang ◽  
Juan Cao ◽  
Yuchuan Luo ◽  
Liangliang Zhang ◽  
...  

Wheat is one of the main crops in China, and crop yield prediction is important for regional trade and national food security. There are increasing concerns with respect to how to integrate multi-source data and employ machine learning techniques to establish a simple, timely, and accurate crop yield prediction model at an administrative unit. Many previous studies were mainly focused on the whole crop growth period through expensive manual surveys, remote sensing, or climate data. However, the effect of selecting different time window on yield prediction was still unknown. Thus, we separated the whole growth period into four time windows and assessed their corresponding predictive ability by taking the major winter wheat production regions of China as an example in the study. Firstly we developed a modeling framework to integrate climate data, remote sensing data and soil data to predict winter wheat yield based on the Google Earth Engine (GEE) platform. The results show that the models can accurately predict yield 1~2 months before the harvesting dates at the county level in China with an R2 > 0.75 and yield error less than 10%. Support vector machine (SVM), Gaussian process regression (GPR), and random forest (RF) represent the top three best methods for predicting yields among the eight typical machine learning models tested in this study. In addition, we also found that different agricultural zones and temporal training settings affect prediction accuracy. The three models perform better as more winter wheat growing season information becomes available. Our findings highlight a potentially powerful tool to predict yield using multiple-source data and machine learning in other regions and for crops.


Author(s):  
Janmejay Pant ◽  
R.P. Pant ◽  
Manoj Kumar Singh ◽  
Devesh Pratap Singh ◽  
Himanshu Pant

2020 ◽  
Vol 291 ◽  
pp. 108043 ◽  
Author(s):  
Bin Wang ◽  
Puyu Feng ◽  
Cathy Waters ◽  
James Cleverly ◽  
De Li Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document