132: Role of amniotic fluid (AF) nitric oxide (NO) and total antioxidant capacity (TAC) on cervical incompetence (CI)

2011 ◽  
Vol 204 (1) ◽  
pp. S66
Author(s):  
Keun-Young Lee ◽  
Hyun-Ah Jun ◽  
Ji-Eun Song ◽  
Carl P. Weiner ◽  
Soo-Ran Choi
2006 ◽  
Vol 86 (2) ◽  
pp. 304-309 ◽  
Author(s):  
Mohamed Bedaiwy ◽  
Ashok Agarwal ◽  
Tamer M. Said ◽  
Jeffery M. Goldberg ◽  
Rakesh K. Sharma ◽  
...  

Author(s):  
Altug Kucukgul ◽  
Mehmet M. Isgor ◽  
Vesile Duzguner ◽  
Meryem N. Atabay ◽  
Azime Kucukgul

Background: Persistent oxidative stress can lead to chronic inflammation and mediate most chronic diseases including neurological disorders. Oleuropein has been shown to be a potent antioxidant molecule in olive oil leaf having antioxidative properties. Objective: The aim of this study was to investigate the protective effects of oleuropein against oxidative stress in human glioblastoma cells. Methods: Human glioblastoma cells (U87) were pretreated with oleuropein (OP) essential oil 10 µM. After 30 minutes, 100 µM H2O2 was added to the cells for three hours. Cell survival was quantified by colorimetric MTT assay. Glutathione level, total oxidant capacity, total antioxidant capacity and nitric oxide levels were determined by using specific spectrophotometric methods. The relative gene expression level of iNOS was performed by qRT-PCR method. Results: According to viability results, the effective concentration of H2O2 (100µM) significantly decreased cell viability and oleuropein pretreatment significantly prevented the cell losses. Oleuropein regenerated total antioxidant capacity and glutathione levels decreased by H2O2 exposure. In addition, nitric oxide and total oxidant capacity levels were also decreased after administration of oleuropein in treated cells. Conclusion: Oleuropein was found to have potent antioxidative properties in human glioblastoma cells. However, further studies and validations are needed in order to understand the exact neuroprotective mechanism of oleuropein.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 794 ◽  
Author(s):  
Celeste Santos-Rosendo ◽  
Fernando Bugatto ◽  
Alvaro González-Domínguez ◽  
Alfonso M. Lechuga-Sancho ◽  
Rosa Maria Mateos ◽  
...  

Pregnancy-related disorders, including preeclampsia and gestational diabetes, are characterized by the presence of an adverse intrauterine milieu that may ultimately result in oxidative and nitrosative stress. This scenario may trigger uncontrolled production of reactive oxygen species (ROS) such as superoxide anion (O●−) and reactive nitrogen species (RNS) such as nitric oxide (NO), along with an inactivation of antioxidant systems, which are associated with the occurrence of relevant changes in placental function through recognized redox post-translational modifications in key proteins. The general objective of this study was to assess the impact of a maternal obesogenic enviroment on the regulation of the placental nitroso-redox balance at the end of pregnancy. We measured oxidative damage markers—thiobarbituric acid-reacting substances (TBARS) and carbonyl groups (C=O) levels; nitrosative stress markers—inducible nitric oxide synthase, nitrosothiol groups, and nitrotyrosine residues levels; and the antioxidant biomarkers—catalase and superoxide dismutase (SOD) activity and expression, and total antioxidant capacity (TAC), in full-term placental villous from both pre-pregnancy normal weight and obese women, and with absence of metabolic complications throughout gestation. The results showed a decrease in C=O and TBARS levels in obese pregnancies. Although total SOD and catalase concentrations were shown to be increased, both activities were significantly downregulated in obese pregnancies, along with total antioxidant capacity. Inducible nitric oxide sintase levels were increased in the obese group compared to the lean group, accompanied by an increase in nitrotyrosine residues levels and lower levels of nitrosothiol groups in proteins such as ERK1/2. These findings reveal a reduction in oxidative damage, accompanied by a decline in antioxidant response, and an increase via NO-mediated nitrative stress in placental tissue from metabolically healthy pregnancies with obesity. All this plausibly points to a placental adaptation of the affected antioxidant response towards a NO-induced alternative pathway, through changes in the ROS/RNS balance, in order to reduce oxidative damage and preserve placental function in pregnancy.


2004 ◽  
Vol 82 ◽  
pp. S195-S196 ◽  
Author(s):  
M.A. Bedaiwy ◽  
A. Agarwal ◽  
T.M. Said ◽  
S. Worley ◽  
J. Thornton ◽  
...  

2003 ◽  
Vol 101 (4) ◽  
pp. 756-761 ◽  
Author(s):  
Janet M. Burlingame ◽  
Navid Esfandiari ◽  
Rakesh K. Sharma ◽  
Edward Mascha ◽  
Tommaso Falcone

Sign in / Sign up

Export Citation Format

Share Document