scholarly journals Prostate MRI and the value of experience: An intrareader variability study

Author(s):  
Thomas Whish-Wilson ◽  
Jo-Lynn Tan ◽  
William Cross ◽  
Lih-Ming Wong ◽  
Tom Sutherland
2018 ◽  
Vol 51 (2) ◽  
Author(s):  
Sohail Ahmad Jan ◽  
Zabta Khan Shinwari ◽  
Malik Ashiq Rabbani ◽  
Ali Talha Khalil ◽  
Azhar Hussain Shah

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Giganti ◽  
Alex Kirkham ◽  
Veeru Kasivisvanathan ◽  
Marianthi-Vasiliki Papoutsaki ◽  
Shonit Punwani ◽  
...  

AbstractProstate magnetic resonance imaging (MRI) of high diagnostic quality is a key determinant for either detection or exclusion of prostate cancer. Adequate high spatial resolution on T2-weighted imaging, good diffusion-weighted imaging and dynamic contrast-enhanced sequences of high signal-to-noise ratio are the prerequisite for a high-quality MRI study of the prostate. The Prostate Imaging Quality (PI-QUAL) score was created to assess the diagnostic quality of a scan against a set of objective criteria as per Prostate Imaging-Reporting and Data System recommendations, together with criteria obtained from the image. The PI-QUAL score is a 1-to-5 scale where a score of 1 indicates that all MR sequences (T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced sequences) are below the minimum standard of diagnostic quality, a score of 3 means that the scan is of sufficient diagnostic quality, and a score of 5 implies that all three sequences are of optimal diagnostic quality. The purpose of this educational review is to provide a practical guide to assess the quality of prostate MRI using PI-QUAL and to familiarise the radiologist and all those involved in prostate MRI with this scoring system. A variety of images are also presented to demonstrate the difference between suboptimal and good prostate MR scans.


2021 ◽  
Vol 69 ◽  
pp. 101957
Author(s):  
Rewa R. Sood ◽  
Wei Shao ◽  
Christian Kunder ◽  
Nikola C. Teslovich ◽  
Jeffrey B. Wang ◽  
...  

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Sara Benyakhlef ◽  
Ahmed Al Mers ◽  
Ossama Merroun ◽  
Abdelfattah Bouatem ◽  
Hamid Ajdad ◽  
...  

Reducing levelized electricity costs of concentrated solar power (CSP) plants can be of great potential in accelerating the market penetration of these sustainable technologies. Linear Fresnel reflectors (LFRs) are one of these CSP technologies that may potentially contribute to such cost reduction. However, due to very little previous research, LFRs are considered as a low efficiency technology. In this type of solar collectors, there is a variety of design approaches when it comes to optimizing such systems. The present paper aims to tackle a new research axis based on variability study of heliostat curvature as an approach for optimizing small and large-scale LFRs. Numerical investigations based on a ray tracing model have demonstrated that LFR constructors should adopt a uniform curvature for small-scale LFRs and a variable curvature per row for large-scale LFRs. Better optical performances were obtained for LFRs regarding these adopted curvature types. An optimization approach based on the use of uniform heliostat curvature for small-scale LFRs has led to a system cost reduction by means of reducing its receiver surface and height.


Radiology ◽  
2020 ◽  
Vol 296 (1) ◽  
pp. 76-84 ◽  
Author(s):  
Antonio C. Westphalen ◽  
Charles E. McCulloch ◽  
Jordan M. Anaokar ◽  
Sandeep Arora ◽  
Nimrod S. Barashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document