Life cycle assessment of novel technologies for algae harvesting and oil extraction in the renewable diesel pathway

2019 ◽  
Vol 37 ◽  
pp. 248-259 ◽  
Author(s):  
Rui Shi ◽  
Robert M. Handler ◽  
David R. Shonnard
2020 ◽  
Vol 12 (9) ◽  
pp. 3674
Author(s):  
Miguel Vigil ◽  
Maria Pedrosa Laza ◽  
Henar Moran-Palacios ◽  
JV Alvarez Cabal

Fresh-cut vegetables, namely those that undergo processes such as washing, sorting, or chopping while keeping their fresh state, constitute an important market element nowadays. Among those operations, the washing step becomes really important due both to the extensive use of water resources and to the utilization of controversial water sanitizing agents, such as chlorine. To ideally eliminate those chlorinated compounds while decreasing water consumption, four novel filtrating technologies (pulsed corona discharge combined with nanofiltration, NF-PCD; classical ultrafiltration, UF; nanofiltration membranes integrating silver nanoparticles, NF-AgNP; and microfiltration with cellulose acetate membranes containing chitin nanocrystals, ChCA) have been proposed to eliminate any contaminating agent in recirculated water. Here, we performed a life cycle assessment (LCA) to assess the environmental effects of introducing these new solutions and to compare those impacts with the burden derived from the current strategy. The novel technologies showed a decreased environmental burden, mainly due to the enhanced water recirculation and the subsequent decrease in energy consumption for pumping and cooling the water stream. The environmental gain would be maintained even if a certain amount of chlorine was still needed. This analysis could serve as an aid to decision-making while evaluating the introduction of new sanitizing techniques.


2020 ◽  
Vol 13 (4) ◽  
pp. 275-294
Author(s):  
Konstantin Pikula ◽  
Alexander Zakharenko ◽  
Antonios Stratidakis ◽  
Mayya Razgonova ◽  
Alexander Nosyrev ◽  
...  

2021 ◽  
Author(s):  
Lihui Sun ◽  
Yuying Wang ◽  
Yuqing Gong

Abstract Environmental problems caused by the food processing industry have always been one of the concerns for the public. Herein, for the first time, a gate-to-gate life cycle assessment (LCA) was employed to evaluate the environmental impact of rice bran oil production. Four subsystems namely transportation of the raw rice bran to oil factory, crude oil extraction, oil refining as well as oil storage were established. The product sustainability software GaBi and the method CML 2001-Jan. 2016 were used to calculate and analyze the environmental burdens at each stage of the rice bran oil production chain. The results show the oil refining stage had the greatest environmental impact, followed by the oil extraction stage. High demands for coal and electricity, make a critical difference in generating vast majority of environmental impacts. Modifying the electricity source and replacing traditional fuels with cleaner ones will do bring benefits to the sustainable development of the industry.


2016 ◽  
Vol 22 (3) ◽  
pp. 423-440 ◽  
Author(s):  
Berthe van Haaster ◽  
Andreas Ciroth ◽  
João Fontes ◽  
Richard Wood ◽  
Andrea Ramirez

2020 ◽  
Vol 12 (3) ◽  
pp. 1192 ◽  
Author(s):  
Nils Thonemann ◽  
Anna Schulte ◽  
Daniel Maga

Emerging technologies are expected to contribute to environmental sustainable development. However, throughout the development of novel technologies, it is unknown whether emerging technologies can lead to reduced environmental impacts compared to a potentially displaced mature technology. Additionally, process steps suspected to be environmental hotspots can be improved by process engineers early in the development of the emerging technology. In order to determine the environmental impacts of emerging technologies at an early stage of development, prospective life cycle assessment (LCA) should be performed. However, consistency in prospective LCA methodology is lacking. Therefore, this article develops a framework for a prospective LCA in order to overcome the methodological inconsistencies regarding prospective LCAs. The methodological framework was developed using literature on prospective LCAs of emerging technologies, and therefore, a literature review on prospective LCAs was conducted. We found 44 case studies, four review papers, and 17 papers on methodological guidance. Three main challenges for conducting prospective LCAs are identified: Comparability, data, and uncertainty challenges. The issues in defining the aim, functionality, and system boundaries of the prospective LCAs, as well as problems with specifying LCIA methodologies, comprise the comparability challenge. Data availability, quality, and scaling are issues within the data challenge. Finally, uncertainty exists as an overarching challenge when applying a prospective LCA. These three challenges are especially crucial for the prospective assessment of emerging technologies. However, this review also shows that within the methodological papers and case studies, several approaches exist to tackle these challenges. These approaches were systematically summarized within a framework to give guidance on how to overcome the issues when conducting prospective LCAs of emerging technologies. Accordingly, this framework is useful for LCA practitioners who are analyzing early-stage technologies. Nevertheless, further research is needed to develop appropriate scale-up schemes and to include uncertainty analyses for a more in-depth interpretation of results.


2021 ◽  
Vol 9 ◽  
Author(s):  
Antonio Arguelles-Arguelles ◽  
Myriam Adela Amezcua-Allieri ◽  
Luis Felipe Ramírez-Verduzco

Transition to a new energy low carbon pool requires the gradual replacing of fossil fuels with other cleaner energies and biofuels. In this work, the environmental impact of renewable diesel production using an attributional life cycle assessment was evaluated by considering five stages: palm plantation-culture-harvest, palm oil extraction, palm oil refining, green (renewable) diesel production, and biofuel use. The functional unit was established as 1.6 × 10−2 m3 (13.13 kg) of renewable diesel. The results show that the production of renewable diesel by Hydro-processed Esters and Fatty Acids is more environmentally friendly than fossil diesel production. In particular, the analysis showed that the CO2 emission decreases around 110% (i.e. mitigation occurred) compared with conventional diesel production. However, renewable diesel production has a relevant environmental impact in the human toxicity category due to the high consumption of agrochemicals during palm culture.


Sign in / Sign up

Export Citation Format

Share Document