scholarly journals Life Cycle Assessment of Rice Bran Oil Production: A Case Study in China

Author(s):  
Lihui Sun ◽  
Yuying Wang ◽  
Yuqing Gong

Abstract Environmental problems caused by the food processing industry have always been one of the concerns for the public. Herein, for the first time, a gate-to-gate life cycle assessment (LCA) was employed to evaluate the environmental impact of rice bran oil production. Four subsystems namely transportation of the raw rice bran to oil factory, crude oil extraction, oil refining as well as oil storage were established. The product sustainability software GaBi and the method CML 2001-Jan. 2016 were used to calculate and analyze the environmental burdens at each stage of the rice bran oil production chain. The results show the oil refining stage had the greatest environmental impact, followed by the oil extraction stage. High demands for coal and electricity, make a critical difference in generating vast majority of environmental impacts. Modifying the electricity source and replacing traditional fuels with cleaner ones will do bring benefits to the sustainable development of the industry.

2021 ◽  
Vol 773 ◽  
pp. 145573
Author(s):  
Ricardo González-Quintero ◽  
Diana María Bolívar-Vergara ◽  
Ngonidzashe Chirinda ◽  
Jacobo Arango ◽  
Heiber Pantevez ◽  
...  

Author(s):  
Victor Baron ◽  
Mohamed Saoud ◽  
Joni Jupesta ◽  
Ikhsan Rezky Praptantyo ◽  
Hartono Tirto Admojo ◽  
...  

Palm oil mill’s co-products (empty fruit bunch – EFB and palm oil mill effluent – POME) management is a matter of concern in Indonesia. Co-composting is a promising waste management practice that would allow a reduction of environmental impact and a restitution of organic matter to the soil. This study is a part of a Life Cycle Assessment (LCA) project and aims to pinpoint the most environmentally impacting compartments of the palm oil production chain. It deals more specifically with the Life Cycle Inventory of data on the composting process based on site specific data. Data on the recycled biomass, energy demand and yielded compost properties were recorded in an industrial palm oil mill over one year. Due to the local conditions, high nutrient leaching from the compost were recorded and the compost remained very wet and hot (thermophilic phase). The composting process only led to 40% of methane avoidance compared to anaerobic digestion of POME, and the global nutrient recovery efficiency was below 50%. We identified the following critical parameters to increase environmental benefits from composting:      i) the POME/FFB ratio from the mill ii) the roofing of the composting platform, iii) the POME/EFB ratio, iv) the turning frequency, v) the recycling of leachates and vi) the process duration and drying period. The nutrient recovery and the doses of compost applied in the field depend on all of those inter-connected parameters. The data presented will be used within LCA models to assess net environmental benefits from various POME and EFB co-composting systems.


Agriculture ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 165 ◽  
Author(s):  
Pedro Henrique Presumido ◽  
Fernando Sousa ◽  
Artur Gonçalves ◽  
Tatiane Cristina Dal Bosco ◽  
Manuel Feliciano

The beef supply chain has multiple negative impacts on the environment. A method widely used to measure impacts from both the use of resources and the emissions generated by this sector is the life cycle assessment (LCA) (ISO 14040). This study aimed to evaluate a semi-intensive system (SIS) and an extensive organic system (EOS), combined with two different slaughterhouses located in the northeast of Portugal. The studied slaughterhouses are similar in size but differ in number of slaughters and in sources of thermal energy: natural gas (Mng) vs. biomass pellets (Mp). Four categories of environmental impact were evaluated: global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), and photochemical ozone creation potential (POCP). As expected, higher impacts were found for SIS for all studied impact categories. Slaughterhouse activities, fertilizer production, and solid waste treatment stages showed little contribution when compared to animal production. Concerning the slaughterhouses activities, the main sources of environmental impact were the use of energy (electric and thermal) and by-products transportation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Antonio Arguelles-Arguelles ◽  
Myriam Adela Amezcua-Allieri ◽  
Luis Felipe Ramírez-Verduzco

Transition to a new energy low carbon pool requires the gradual replacing of fossil fuels with other cleaner energies and biofuels. In this work, the environmental impact of renewable diesel production using an attributional life cycle assessment was evaluated by considering five stages: palm plantation-culture-harvest, palm oil extraction, palm oil refining, green (renewable) diesel production, and biofuel use. The functional unit was established as 1.6 × 10−2 m3 (13.13 kg) of renewable diesel. The results show that the production of renewable diesel by Hydro-processed Esters and Fatty Acids is more environmentally friendly than fossil diesel production. In particular, the analysis showed that the CO2 emission decreases around 110% (i.e. mitigation occurred) compared with conventional diesel production. However, renewable diesel production has a relevant environmental impact in the human toxicity category due to the high consumption of agrochemicals during palm culture.


Author(s):  
Cheila Almeida ◽  
Philippe Loubet ◽  
Tamíris Pacheco da Costa ◽  
Paula Quinteiro ◽  
Jara Laso ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


Author(s):  
Yuma Sasaki ◽  
Takahiro Orikasa ◽  
Nobutaka Nakamura ◽  
Kiyotada Hayashi ◽  
Yoshihito Yasaka ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4146
Author(s):  
Agnieszka Jachura ◽  
Robert Sekret

This paper presents an environmental impact assessment of the entire cycle of existence of the tube-vacuum solar collector prototype. The innovativeness of the solution involved using a phase change material as a heat-storing material, which was placed inside the collector’s tubes-vacuum. The PCM used in this study was paraffin. The system boundaries contained three phases: production, operation (use phase), and disposal. An ecological life cycle assessment was carried out using the SimaPro software. To compare the environmental impact of heat storage, the amount of heat generated for 15 years, starting from the beginning of a solar installation for preparing domestic hot water for a single-family residential building, was considered the functional unit. Assuming comparable production methods for individual elements of the ETC and waste management scenarios, the reduction in harmful effects on the environment by introducing a PCM that stores heat inside the ETC ranges from 17 to 24%. The performed analyses have also shown that the method itself of manufacturing the materials used for the construction of the solar collector and the choice of the scenario of the disposal of waste during decommissioning the solar collector all play an important role in its environmental assessment. With an increase in the application of the advanced technologies of materials manufacturing and an increase in the amount of waste subjected to recycling, the degree of the solar collector’s environmental impact decreased by 82% compared to its standard manufacture and disposal.


Sign in / Sign up

Export Citation Format

Share Document