scholarly journals Growth modeling to evaluate alternative cultivation strategies to enhance national microalgal biomass production

2020 ◽  
Vol 49 ◽  
pp. 101939 ◽  
Author(s):  
Ning Sun ◽  
Richard L. Skaggs ◽  
Mark S. Wigmosta ◽  
André M. Coleman ◽  
Michael H. Huesemann ◽  
...  
Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121236
Author(s):  
Alejandra M. Miranda ◽  
Alex A. Sáez ◽  
Brenda S. Hoyos ◽  
Deiver A. Gómez ◽  
Gabriel J. Vargas

2016 ◽  
Vol 95 ◽  
pp. 527-533 ◽  
Author(s):  
Min-Kyu Ji ◽  
Hyun-Shik Yun ◽  
Buyng Su Hwang ◽  
Akhil N. Kabra ◽  
Byong-Hun Jeon ◽  
...  

2020 ◽  
Vol 43 (8) ◽  
pp. 1487-1497
Author(s):  
Srijoni Banerjee ◽  
Soumendu Dasgupta ◽  
Debabrata Das ◽  
Arnab Atta

2019 ◽  
Vol 20 (10) ◽  
pp. 2492 ◽  
Author(s):  
Krystian Miazek ◽  
Beata Brozek-Pluska

In this review, the effect of pharmaceuticals (PHRs) and personal care products (PCPs) on microalgal growth and metabolism is reported. Concentrations of various PHRs and PCPs that cause inhibition and toxicity to growths of different microalgal strains are summarized and compared. The effect of PHRs and PCPs on microalgal metabolism (oxidative stress, enzyme activity, pigments, proteins, lipids, carbohydrates, toxins), as well as on the cellular morphology, is discussed. Literature data concerning the removal of PHRs and PCPs from wastewaters by living microalgal cultures, with the emphasis on microalgal growth, are gathered and discussed. The potential of simultaneously bioremediating PHRs/PCPs-containing wastewaters and cultivating microalgae for biomass production in a single process is considered. In the light of reviewed data, the feasibility of post-bioremediation microalgal biomass is discussed in terms of its contamination, biosafety and further usage for production of value-added biomolecules (pigments, lipids, proteins) and biomass as a whole.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Tadashi Toyama ◽  
Tsubasa Hanaoka ◽  
Koji Yamada ◽  
Kengo Suzuki ◽  
Yasuhiro Tanaka ◽  
...  

Abstract Background Euglena gracilis, a unicellular flagellated microalga, is regarded as one of the most promising species as microalgal feedstock for biofuels. Its lipids (mainly wax esters) are suitable for biodiesel and jet fuel. Culture of E. gracilis using wastewater effluent will improve the economics of E. gracilis biofuel production. Enhancement of the productivity of E. gracilis biomass is critical to creating a highly efficient biofuels production system. Certain bacteria have been found to promote microalgal growth by creating a favorable microenvironment. These bacteria have been characterized as microalgae growth-promoting bacteria (MGPB). Co-culture of microalgae with MGPB might offer an effective strategy to enhance microalgal biomass production in wastewater effluent culture systems. However, no MGPB has been identified to enhance the growth of E. gracilis. The objectives of this study were, therefore, to isolate and characterize the MGPB effective for E. gracilis and to demonstrate that the isolated MGPB indeed enhances the production of biomass and lipids by E. gracilis in wastewater effluent culture system. Results A bacterium, Emticicia sp. EG3, which is capable of promoting the growth of microalga E. gracilis, was isolated from an E. gracilis-municipal wastewater effluent culture. Biomass production rate of E. gracilis was enhanced 3.5-fold and 3.1-fold by EG3 in the co-culture system using a medium of heat-sterilized and non-sterilized wastewater effluent, respectively, compared to growth in the same effluent culture but without EG3. Two-step culture system was examined as follows: E. gracilis was cultured with or without EG3 in wastewater effluent in the first step and was further grown in wastewater effluent in the second step. Production yields of biomass and lipids by E. gracilis were enhanced 3.2-fold and 2.9-fold, respectively, in the second step of the system in which E. gracilis was co-cultured with EG3 in the first step. Conclusion Emticicia sp. EG3 is the first MGPB for E. gracilis. Growth-promoting bacteria such as EG3 will be promising agents for enhancing E. gracilis biomass/biofuel productivities.


2020 ◽  
Vol 186 ◽  
pp. 116370
Author(s):  
César Cunha ◽  
Joana Lopes ◽  
Jorge Paulo ◽  
Marisa Faria ◽  
Manfred Kaufmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document