The exponential function rational expansion method and exact solutions to nonlinear lattice equations system

2010 ◽  
Vol 217 (4) ◽  
pp. 1561-1565 ◽  
Author(s):  
Hua Xin
2016 ◽  
Vol 8 (2) ◽  
pp. 293-305 ◽  
Author(s):  
Ahmet Bekir ◽  
Ozkan Guner ◽  
Burcu Ayhan ◽  
Adem C. Cevikel

AbstractIn this paper, the (G'/G)-expansion method is suggested to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. The fractional complex transform is proposed to convert a fractional partial differential difference equation into its differential difference equation of integer order. With the aid of symbolic computation, we choose nonlinear lattice equations to illustrate the validity and advantages of the algorithm. It is shown that the proposed algorithm is effective and can be used for many other nonlinear lattice equations in mathematical physics and applied mathematics.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
Vina Apriliani ◽  
Ikhsan Maulidi ◽  
Budi Azhari

One of the phenomenon in marine science that is often encountered is the phenomenon of water waves. Waves that occur below the surface of seawater are called internal waves. One of the mathematical models that can represent solitary internal waves is the modified Korteweg-de Vries (mKdV) equation. Many methods can be used to construct the solution of the mKdV wave equation, one of which is the extended F-expansion method. The purpose of this study is to determine the solution of the mKdV wave equation using the extended F-expansion method. The result of solving the mKdV wave equation is the exact solutions. The exact solutions of the mKdV wave equation are expressed in the Jacobi elliptic functions, trigonometric functions, and hyperbolic functions. From this research, it is expected to be able to add insight and knowledge about the implementation of the innovative methods for solving wave equations. 


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3347-3354 ◽  
Author(s):  
Nematollah Kadkhoda ◽  
Michal Feckan ◽  
Yasser Khalili

In the present article, a direct approach, namely exp(-?)-expansion method, is used for obtaining analytical solutions of the Pochhammer-Chree equations which have a many of models. These solutions are expressed in exponential functions expressed by hyperbolic, trigonometric and rational functions with some parameters. Recently, many methods were attempted to find exact solutions of nonlinear partial differential equations, but it seems that the exp(-?)-expansion method appears to be efficient for finding exact solutions of many nonlinear differential equations.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yongyi Gu ◽  
Fanning Meng

In this paper, we derive analytical solutions of the (2+1)-dimensional Kadomtsev-Petviashvili (KP) equation by two different systematic methods. Using the exp⁡(-ψ(z))-expansion method, exact solutions of the mentioned equation including hyperbolic, exponential, trigonometric, and rational function solutions have been obtained. Based on the work of Yuan et al., we proposed the extended complex method to seek exact solutions of the (2+1)-dimensional KP equation. The results demonstrate that the applied methods are efficient and direct methods to solve the complex nonlinear systems.


Author(s):  
Shuang Liu ◽  
Yao Ding ◽  
Jian-Guo Liu

AbstractBy employing the generalized$(G'/G)$-expansion method and symbolic computation, we obtain new exact solutions of the (3 + 1) dimensional generalized B-type Kadomtsev–Petviashvili equation, which include the traveling wave exact solutions and the non-traveling wave exact solutions showed by the hyperbolic function and the trigonometric function. Meanwhile, some interesting physics structure are discussed.


Pramana ◽  
2012 ◽  
Vol 78 (4) ◽  
pp. 513-529 ◽  
Author(s):  
ANAND MALIK ◽  
FAKIR CHAND ◽  
HITENDER KUMAR ◽  
S C MISHRA

Sign in / Sign up

Export Citation Format

Share Document