Trigonometrically fitted multi-step RKN methods for second-order oscillatory initial value problems

2018 ◽  
Vol 320 ◽  
pp. 740-753
Author(s):  
Jiyong Li ◽  
Shuo Deng
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
N. Senu ◽  
F. Ismail ◽  
S. Z. Ahmad ◽  
M. Suleiman

Two-step optimized hybrid methods of order five and order six are developed for the integration of second order oscillatory initial value problems. The optimized hybrid method (OHMs) are based on the existing nonzero dissipative hybrid methods. Phase-lag, dissipation or amplification error, and the differentiation of the phase-lag relations are required to obtain the methods. Phase-fitted methods based on the same nonzero dissipative hybrid methods are also constructed. Numerical results show that OHMs are more accurate compared to the phase-fitted methods and some well-known methods appeared in the scientific literature in solving oscillating second order initial value problems. It is also found that the nonzero dissipative hybrid methods are more suitable to be optimized than phase-fitted methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-28
Author(s):  
Jiang Zhu ◽  
Dongmei Liu

Some delta-nabla type maximum principles for second-order dynamic equations on time scales are proved. By using these maximum principles, the uniqueness theorems of the solutions, the approximation theorems of the solutions, the existence theorem, and construction techniques of the lower and upper solutions for second-order linear and nonlinear initial value problems and boundary value problems on time scales are proved, the oscillation of second-order mixed delat-nabla differential equations is discussed and, some maximum principles for second order mixed forward and backward difference dynamic system are proved.


Sign in / Sign up

Export Citation Format

Share Document