Synchronization of discrete-time recurrent neural networks with time-varying delays via quantized sliding mode control

2020 ◽  
Vol 375 ◽  
pp. 125093 ◽  
Author(s):  
Bo Sun ◽  
Yuting Cao ◽  
Zhenyuan Guo ◽  
Zheng Yan ◽  
Shiping Wen
2019 ◽  
Vol 41 (13) ◽  
pp. 3565-3580 ◽  
Author(s):  
Hamid Toshani ◽  
Mohammad Farrokhi

In this paper, a robust and chattering-free sliding-mode control strategy using recurrent neural networks (RNNs) and H∞ approach for a class of nonlinear systems with uncertainties is proposed. The dynamic and algebraic models of the RNN are extracted based on the nominal model of the system and formulation of a quadratic programming problem. For tuning the parameters of the sliding surface, the performance index and the switching coefficient, a robust approach based on the H∞ method is developed. To this end, the control law is divided into two parts: (1) the main term, which includes the feedback error and (2) other terms, which include the network states, the reference input and its derivatives and the effects of the uncertainties. The feedback error gain is tuned by solving a linear matrix inequality. The neural optimizer determines the sliding-mode control law without being directly affected by the uncertainties. By applying the proposed method to the continuous-stirred reactor tank and the inverted pendulum problems, the performance of the proposed controller has been evaluated in terms of the tracking accuracy, elimination of the chattering, robustness against the uncertainties and feasibility of the control signals. Moreover, the results are compared with the conventional and twisting sliding-mode control methods.


2020 ◽  
Vol 126 ◽  
pp. 163-169
Author(s):  
Bo Sun ◽  
Shengbo Wang ◽  
Yuting Cao ◽  
Zhenyuan Guo ◽  
Tingwen Huang ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 185 ◽  
Author(s):  
Grzegorz Tarchała ◽  
Teresa Orłowska-Kowalska

Sliding mode control (SMC) of electric drives constitutes a very popular control method for nonlinear multivariable and time-varying systems, e.g., induction motor (IM) drives. Nowadays, IM are the most popular electrical machines (EM) applied in many industrial applications as motion control devices, including electrical and hybrid vehicles. Nowadays, the control systems of EM are mostly realized using digital techniques (microprocessors and microcontrollers). Therefore, all control algorithms should be discretized or the whole control system should be designed in the discrete-time domain. This paper deals with a discrete-time sliding mode control (DSMC) for IM drives. The discrete algorithms for sliding mode control of the motor speed and rotor flux are derived in detail and next tested in simulation research. The simulation tests include the discrete nature of the power converter supplying the IM and present excellent performance of the developed control structure. To obtain the rotor speed regulation invariant to external disturbances, like load torque or inertia, especially during the reaching phase of the switching line, the discrete version of a time-varying switching line was introduced. It is shown that the assumed dynamics of the IM flux and speed is achieved and the proposed control algorithm can be realized using commonly available microcontrollers. The paper is illustrated with comprehensive simulation results for 1.5 kW IM drive, which are verified by experimental tests.


Sign in / Sign up

Export Citation Format

Share Document