Numerical simulation for nanofluid extravasation from a vertical segment of a cylindrical vessel into the surrounding tissue at the microscale

2022 ◽  
Vol 417 ◽  
pp. 126758
Author(s):  
A.M. Ismaeel ◽  
M.A. Mansour ◽  
F.S. Ibrahim ◽  
F.M. Hady
1993 ◽  
Vol 115 (3) ◽  
pp. 613-620 ◽  
Author(s):  
S. Ushijima ◽  
S. Moriya ◽  
N. Tanaka

This paper describes numerical and experimental investigations on internal standing waves occurring in a cylindrical vessel and their near-wall behavior in the vicinity of an adiabatic cylinder located at the center of the vessel. A numerical prediction method was developed with a low-Reynolds-number turbulence model to stimulate the occurrence of the internal standing waves and their near-wall features. These features are characterized by the attenuation and phase shifts in temperature fluctuations as observed in the present experiments. The measured results were well predicted by the numerical simulation in terms of certain statistical values as well as qualitative internal wave motions and flow patterns.


Author(s):  
Guide Deng ◽  
Ping Xu ◽  
Jinyang Zheng ◽  
Yongjun Chen ◽  
Yongle Hu ◽  
...  

Determining blast loadings on an explosion containment vessel (ECV) is the foundation to design the ECV. Explosion of TNT centrally located in a thick-walled cylindrical vessel and its impact on the cylinder was simulated using the explicit finite element code LS-DYNA. Blast loadings on the cylinder computed are in good agreement with the corresponding experimental results. Then wall thickness and yield stress of the cylinder were changed in the following simulation to investigate effect of shell deformation on blast loadings. It is revealed that shell deformation during the primary pulses of blast loadings is so slight that it has little influence on the blast loadings. Though the deformation may increase greatly after the primary pulses, the dynamic response of an ECV is mainly affected by the primary pulses. Therefore, decoupled analyses are appropriate, in which the shell of an ECV is treated as a rigid wall when determining blast loadings on it.


2017 ◽  
Vol 12 (1) ◽  
pp. 115-125 ◽  
Author(s):  
O.A. Simonov

he results of experimental studies of the cooling process of the water bacterial suspensions in a cylindrical vessel near the maximum density of water are present. Carried out direct numerical simulation of convective flow of water. Studied the flow regimes, the calculated integral parameters of the flow. Shows the influence of surface tension on the formation of flow structure, resulting in significantly changed the rate of cooling of the vessel.


Author(s):  
Adrian F. van Dellen

The morphologic pathologist may require information on the ultrastructure of a non-specific lesion seen under the light microscope before he can make a specific determination. Such lesions, when caused by infectious disease agents, may be sparsely distributed in any organ system. Tissue culture systems, too, may only have widely dispersed foci suitable for ultrastructural study. In these situations, when only a few, small foci in large tissue areas are useful for electron microscopy, it is advantageous to employ a methodology which rapidly selects a single tissue focus that is expected to yield beneficial ultrastructural data from amongst the surrounding tissue. This is in essence what "LIFTING" accomplishes. We have developed LIFTING to a high degree of accuracy and repeatability utilizing the Microlift (Fig 1), and have successfully applied it to tissue culture monolayers, histologic paraffin sections, and tissue blocks with large surface areas that had been initially fixed for either light or electron microscopy.


Author(s):  
Fred E. Hossler

Preparation of replicas of the complex arrangement of blood vessels in various organs and tissues has been accomplished by infusing low viscosity resins into the vasculature. Subsequent removal of the surrounding tissue by maceration leaves a model of the intricate three-dimensional anatomy of the blood vessels of the tissue not obtainable by any other procedure. When applied with care, the vascular corrosion casting technique can reveal fine details of the microvasculature including endothelial nuclear orientation and distribution (Fig. 1), locations of arteriolar sphincters (Fig. 2), venous valve anatomy (Fig. 3), and vessel size, density, and branching patterns. Because casts faithfully replicate tissue vasculature, they can be used for quantitative measurements of that vasculature. The purpose of this report is to summarize and highlight some quantitative applications of vascular corrosion casting. In each example, casts were prepared by infusing Mercox, a methyl-methacrylate resin, and macerating the tissue with 20% KOH. Casts were either mounted for conventional scanning electron microscopy, or sliced for viewing with a confocal laser microscope.


Author(s):  
H. J. Finol ◽  
M. E. Correa ◽  
L.A. Sosa ◽  
A. Márquez ◽  
N.L. Díaz

In classical oncological literature two mechanisms for tissue aggression in patients with cancer have been described. The first is the progressive invasion, infiltration and destruction of tissues surrounding primary malignant tumor or their metastases; the other includes alterations produced in remote sites that are not directly affected by any focus of disease, the so called paraneoplastic phenomenon. The non-invaded tissue which surrounds a primary malignant tumor or its metastases has been usually considered a normal tissue . In this work we describe the ultrastructural changes observed in hepatocytes located next to metastases from diverse malignant tumors.Hepatic biopsies were obtained surgically in patients with different malignant tumors which metatastized in liver. Biopsies included tumor mass, the zone of macroscopic contact between the tumor and the surrounding tissue, and the tissue adjacent to the tumor but outside the macroscopic area of infiltration. The patients (n = 5), 36–75 years old, presented different tumors including rhabdomyosarcoma, leiomyosarcoma, pancreas carcinoma, biliar duct carcinoma and colon carcinoma. Tissue samples were processed with routine techniques for transmission electron microscopy and observed in a Hitachi H-500 electron microscope.


2009 ◽  
Vol 00 (00) ◽  
pp. 090904073309027-8
Author(s):  
H.W. Wang ◽  
S. Kyriacos ◽  
L. Cartilier

Sign in / Sign up

Export Citation Format

Share Document