A Quantitative Study of Particle Dispersion due to Respiratory Support Modalities in PC-12 Aircraft: Prehospital Patient Transport

Author(s):  
Michael B. Peddle ◽  
Hamed Avari ◽  
Justin A. Smith ◽  
Agnes A. Ryzynski ◽  
Ruxandra Pinto ◽  
...  
Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


2020 ◽  
Vol 5 (4) ◽  
pp. 1006-1010
Author(s):  
Jennifer Raminick ◽  
Hema Desai

Purpose Infants hospitalized for an acute respiratory illness often require the use of noninvasive respiratory support during the initial stage to improve their breathing. High flow oxygen therapy (HFOT) is becoming a more popular means of noninvasive respiratory support, often used to treat respiratory syncytial virus/bronchiolitis. These infants present with tachypnea and coughing, resulting in difficulties in coordinating sucking and swallowing. However, they are often allowed to feed orally despite having high respiratory rate, increased work of breathing and on HFOT, placing them at risk for aspiration. Feeding therapists who work with these infants have raised concerns that HFOT creates an additional risk factor for swallowing dysfunction, especially with infants who have compromised airways or other comorbidities. There is emerging literature concluding changes in pharyngeal pressures with HFOT, as well as aspiration in preterm neonates who are on nasal continuous positive airway pressure. However, there is no existing research exploring the effect of HFOT on swallowing in infants with acute respiratory illness. This discussion will present findings from literature on HFOT, oral feeding in the acutely ill infant population, and present clinical practice guidelines for safe feeding during critical care admission for acute respiratory illness. Conclusion Guidelines for safety of oral feeds for infants with acute respiratory illness on HFOT do not exist. However, providers and parents continue to want to provide oral feeds despite clinical signs of respiratory distress and coughing. To address this challenge, we initiated a process change to use clinical bedside evaluation and a “cross-systems approach” to provide recommendations for safer oral feeds while on HFOT as the infant is recovering from illness. Use of standardized feeding evaluation and protocol have improved consistency of practice within our department. However, further research is still necessary to develop clinical practice guidelines for safe oral feeding for infants on HFOT.


1950 ◽  
Vol 16 (1) ◽  
pp. 104-116 ◽  
Author(s):  
Henry D. Janowitz ◽  
Franklin Hollander ◽  
David Orringer ◽  
Milton H. Levy ◽  
Asher Winkelstein ◽  
...  

2011 ◽  
Author(s):  
Douglas R. Polster ◽  
Stephen A. Russo ◽  
David E. Richie ◽  
Susana Quintana Marikle

1997 ◽  
Vol 7 (C2) ◽  
pp. C2-437-C2-438 ◽  
Author(s):  
F. Bartolomé ◽  
J. M. Tonnerre ◽  
D. Raoux ◽  
J. Chaboy ◽  
L. M. Garcia ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document