scholarly journals N-dimensional Auto-Bäcklund transformation and exact solutions to n-dimensional Burgers system

2017 ◽  
Vol 63 ◽  
pp. 46-52 ◽  
Author(s):  
Mingliang Wang ◽  
Jinliang Zhang ◽  
Xiangzheng Li
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Lin Jianming ◽  
Ding Jie ◽  
Yuan Wenjun

The Sharma-Tasso-Olver (STO) equation is investigated. The Painlevé analysis is efficiently used for analytic study of this equation. The Bäcklund transformations and some new exact solutions are formally derived.


2009 ◽  
Vol 23 (19) ◽  
pp. 3931-3938 ◽  
Author(s):  
CHUN-LONG ZHENG ◽  
JIAN-FENG YE

Starting from a Painlevé–Bäcklund transformation, an exact variable separation solution with four arbitrary functions for the (2+1)-dimensional generalized Sasa–Satsuma (GSS) system are derived. Based on the derived exact solutions in the paper, some complex wave excitations in the (2+1)-dimensional GSS system and revealed, which describe solitons moving on a periodic wave background. Some interesting evolutional properties for these solitary waves propagating on the periodic wave background are also briefly discussed.


2005 ◽  
Vol 16 (03) ◽  
pp. 393-412 ◽  
Author(s):  
DENGSHAN WANG ◽  
HONG-QING ZHANG

In this paper, making use of the truncated Laurent series expansion method and symbolic computation we get the auto-Bäcklund transformation of the (2 + 1)-dimensional Nizhnik–Novikov–Veselov equation. As a result, single soliton solution, single soliton-like solution, multi-soliton solution, multi-soliton-like solution, the rational solution and other exact solutions of the (2 + 1)-dimensional Nizhnik–Novikov–Veselov equation are found. These solutions may be useful to explain some physical phenomena.


1987 ◽  
Vol 106 (3-4) ◽  
pp. 205-207 ◽  
Author(s):  
A. D. D. Craik

SynopsisExact solutions recently discovered for non-conservative three-wave resonance are here related to the ‘one-lump’ solutions obtained by Backlund transformation in conservative cases.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Haifeng Wang ◽  
Yufeng Zhang

In this article, we mainly apply the nonlocal residual symmetry analysis to a (2 + 1)-dimensional strongly coupled Burgers system, which is defined by us through taking values in a commutative subalgebra. On the basis of the general theory of Painlevé analysis, we get a residual symmetry of the strongly coupled Burgers system. Then, we introduce a suitable enlarged system to localize the nonlocal residual symmetry. In addition, a Bäcklund transformation is derived by Lie’s first theorem. Further, the linear superposition of the multiple residual symmetries is localized to a Lie point symmetry, and an N-th Bäcklund transformation is also obtained.


Sign in / Sign up

Export Citation Format

Share Document