The glade effect: Vegetation openness and structure and their influences on arboreal pollen production and the reconstruction of anthropogenic forest opening

Anthropocene ◽  
2014 ◽  
Vol 8 ◽  
pp. 92-100 ◽  
Author(s):  
Ingo Feeser ◽  
Walter Dörfler
2017 ◽  
Vol 01 (02) ◽  
Author(s):  
Parvan Parvanov ◽  
Dinko Dinkov
Keyword(s):  

1972 ◽  
Vol 52 (4) ◽  
pp. 569-574 ◽  
Author(s):  
K. C. YEUNG ◽  
E. N. LARTER

A study of the pollen production properties of three hexaploid triticale strains (Triticale hexaploide Lart.) showed that their anther length was significantly greater than that of wheat anthers (Triticum aestivum L. em Thell.) and the estimated number of pollen grains per anther ranged from 15,000 to 21,000. In comparison, a total of 8000 grains per anther was estimated for wheat, cult Manitou. Eighty-nine percent anther extrusion occurred in triticale cult Rosner, while Manitou averaged 70% anther extrusion. The period of anthesis of triticale varied according to strain but generally was of longer duration than in Manitou and thereby promoted outcrossing. Using a triticale strain carrying a dominant marker gene, 50% seed-set was obtained at a distance of 12 m leeward of the pollen source; however, a small percentage was still obtained at a distance of 30 m. It would appear from the limited number of triticales used in this study that a wide range of variability exists within this species in its pollen production and disseminating properties. With appropriate selection pressures, strains with an outbreeding habit could be developed for the purpose of hybrid seed production.


Author(s):  
Maria das Graças Vidal ◽  
David de Jong ◽  
Hans Chris Wien ◽  
Roger A. Morse

2013 ◽  
Vol 04 (07) ◽  
pp. 19-25 ◽  
Author(s):  
B. Khanal ◽  
A. Suthaparan ◽  
A. B. Hückstädt ◽  
A. B. Wold ◽  
Leiv Mortensen ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yoon Kim ◽  
Sun-Ho Kim ◽  
Dong-Min Shin ◽  
Soo-Hwan Kim

ATBS1-INTERACTING FACTOR 2 (AIF2) is a non-DNA-binding basic-helix-loop-helix (bHLH) transcription factor. Here, we demonstrate that AIF2 negatively modulates brassinosteroid (BR)-induced, BRASSINAZOLE RESISTANT 1 (BZR1)-mediated pollen and seed formation. AIF2-overexpressing Arabidopsis plants (AIF2ox) showed defective pollen grains and seed production while two AIF2 knockout mutants, aif2-1 and aif2-1/aif4-1, displayed opposite phenotypes. Genes encoding BZR1-regulated positive factors of seed size determination (SHB1, IKU1, MINI3) were suppressed in AIF2ox and genes for negative factors (AP2 and ARF2) were enhanced. Surprisingly, BZR1-regulated pollen genes such as SPL, MS1, and TDF1 were aberrantly up-regulated in AIF2ox plants. This stage-independent abnormal expression may lead to a retarded and defective progression of microsporogenesis, producing abnormal tetrad microspores and pollen grains with less-effective pollen tube germination. Auxin plays important roles in proper development of flower and seeds: genes for auxin biosynthesis such as TCPs and YUCCAs as well as for positive auxin signalling such as ARFs were suppressed in AIF2ox flowers. Moreover, lipid biosynthesis- and sucrose transport-related genes were repressed, resulting in impaired starch accumulation. Contrarily, sucrose and BR repressed ectopic accumulation of AIF2, thereby increasing silique length and the number of seeds. Taken together, we propose that AIF2 is negatively involved in pollen development and seed formation, and that sucrose- and BR-induced repression of AIF2 positively promotes pollen production and seed formation in Arabidopsis.


Sign in / Sign up

Export Citation Format

Share Document