Influence of the uterine inflammatory response after insemination with frozen–thawed semen on serum concentrations of acute phase proteins in mares

2014 ◽  
Vol 146 (3-4) ◽  
pp. 182-186 ◽  
Author(s):  
U. Tuppits ◽  
T. Orro ◽  
S. Einarsson ◽  
K. Kask ◽  
A. Kavak
2016 ◽  
Vol 68 (4) ◽  
pp. 865-872 ◽  
Author(s):  
T.G. Rocha ◽  
F.D.F. Silva ◽  
C. Bortoletto ◽  
D.G. Silva ◽  
M.G. Buzinaro ◽  
...  

ABSTRACT The aim of the present study was to characterize changes in acute phase protein levels according to the occurrence of rotavirus diarrhea in calves in the first month of life. Blood and fecal samples were taken before colostrum intake and at 1, 2, 7, 15, 21 and 30 days of age from 24 Holstein calves allotted in three experimental groups: calves that did not present diarrhea (group A), calves that presented diarrhea, but tested negative for rotavirus in feces (group B), and calves that presented diarrhea and tested positive for rotavirus in feces (group C) (experiment 1). When the animals presented episodes of diarrhea, blood and fecal samples were taken at 24-hour intervals until the end of clinical signs (experiment 2). Serum proteins were separated by SDS-PAGE technique and rotavirus in feces was detected by PAGE. Data of experiment 1 were analyzed by ANOVA and Tukey's test, considered significant at P<0.05. Data of experiment 2 were subjected to the HSD test. Total protein, globulins, and IgG concentrations were lower in group C than in groups A and B. Ceruloplasmin and transferrin levels were higher in group C than in groups A and B. Serum concentrations of haptoglobin and α1-acid glycoprotein did not differ significantly between groups throughout the experimental period. Calves presented diarrhea between 10.4 and 14.6 days of age in group B, and between 10.3 and 14.6 days of age in group C. In the moments of diarrhea manifestation, least square means of IgA, haptoglobin and α1-acid glycoprotein concentrations did not differ significantly between groups B and C, but ceruloplasmin and transferrin concentrations were higher in group C than in group B, as opposed to what occurred with IgG levels. These findings show that optimizing passive immunity transfer of immunoglobulins decrease the likelihood of calves developing diarrhea caused by rotavirus. In addition, ceruloplasmin presents characteristics of a biomarker of rotavirus infection in calves.


2011 ◽  
Vol 39 (2) ◽  
pp. 688-693 ◽  
Author(s):  
Jason P. McMorrow ◽  
Evelyn P. Murphy

Inflammation is paradoxical; it is essential for protection following biological, chemical or physical stimuli, but inappropriate or misdirected inflammation is responsible for tissue injury in a variety of inflammatory diseases. The polarization of immune cells is critical in controlling the stages of inflammatory response. The acute phase of inflammation is characterized by a T-lymphocyte:Th2 cytokine profile and involves a co-ordinated migration of immune cells to the site of injury where production of cytokines and acute-phase proteins brings about healing. However, persistent inflammation can result in inappropriate and prolonged T-lymphocyte:Th1 cytokine-mediated action and reaction of self-molecules, leading to a chronic phase in diseases such as RA (rheumatoid arthritis), Ps (psoriasis) and atherosclerosis. The inflammatory response is also controlled by activated macrophage cells, with classically activated (M1) cells producing a wide variety of pro-inflammatory mediators, while alternatively activated (M2) macrophages participate in anti-inflammatory response. Members of the NR4A subfamily (NR4A1/NUR77, NR4A2/NURR1 and NR4A3/NOR1) of orphan NRs (nuclear receptors) have emerged as key transcriptional regulators of cytokine and growth factor action in diseases affecting our aging population. As ligand-independent and constitutively active receptors, the activity of these transcription factors is tightly controlled at the level of expression, post-translational modification and subcellular localization. NR4A subfamily members are aberrantly expressed in inflamed human synovial tissue, psoriatic skin, atherosclerotic lesions, lung and colorectal cancer cells. Significantly, prolonged or inappropriate inflammatory responses contribute to the pathogenesis of these diseases. In activated cells, NR4A receptors are rapidly and potently induced, suggesting that these receptors may act as important transcriptional mediators of inflammatory signals. NR4A receptors may contribute to the cellular processes that control inflammation, playing a critical part in the contribution of chronic inflammation or they may have a protective role, where they may mediate pro-resolution responses. Here, we will review the contribution of the NR4A orphan NRs to integration of cytokine signalling in inflammatory disorders.


2002 ◽  
Vol 150 (8) ◽  
pp. 241-244 ◽  
Author(s):  
S. Martinez-Subiela ◽  
F. Tecles ◽  
J. J. Ceron ◽  
P. D. Eckersall

Sign in / Sign up

Export Citation Format

Share Document