Functions of Acute Phase Proteins in the Inflammatory Response

2011 ◽  
Vol 39 (2) ◽  
pp. 688-693 ◽  
Author(s):  
Jason P. McMorrow ◽  
Evelyn P. Murphy

Inflammation is paradoxical; it is essential for protection following biological, chemical or physical stimuli, but inappropriate or misdirected inflammation is responsible for tissue injury in a variety of inflammatory diseases. The polarization of immune cells is critical in controlling the stages of inflammatory response. The acute phase of inflammation is characterized by a T-lymphocyte:Th2 cytokine profile and involves a co-ordinated migration of immune cells to the site of injury where production of cytokines and acute-phase proteins brings about healing. However, persistent inflammation can result in inappropriate and prolonged T-lymphocyte:Th1 cytokine-mediated action and reaction of self-molecules, leading to a chronic phase in diseases such as RA (rheumatoid arthritis), Ps (psoriasis) and atherosclerosis. The inflammatory response is also controlled by activated macrophage cells, with classically activated (M1) cells producing a wide variety of pro-inflammatory mediators, while alternatively activated (M2) macrophages participate in anti-inflammatory response. Members of the NR4A subfamily (NR4A1/NUR77, NR4A2/NURR1 and NR4A3/NOR1) of orphan NRs (nuclear receptors) have emerged as key transcriptional regulators of cytokine and growth factor action in diseases affecting our aging population. As ligand-independent and constitutively active receptors, the activity of these transcription factors is tightly controlled at the level of expression, post-translational modification and subcellular localization. NR4A subfamily members are aberrantly expressed in inflamed human synovial tissue, psoriatic skin, atherosclerotic lesions, lung and colorectal cancer cells. Significantly, prolonged or inappropriate inflammatory responses contribute to the pathogenesis of these diseases. In activated cells, NR4A receptors are rapidly and potently induced, suggesting that these receptors may act as important transcriptional mediators of inflammatory signals. NR4A receptors may contribute to the cellular processes that control inflammation, playing a critical part in the contribution of chronic inflammation or they may have a protective role, where they may mediate pro-resolution responses. Here, we will review the contribution of the NR4A orphan NRs to integration of cytokine signalling in inflammatory disorders.


Author(s):  
A.E. Alves ◽  
A.P.C. Ribeiro ◽  
P.A. Di Filippo ◽  
M.F. Apparicio ◽  
J.J. Fagliari ◽  
...  

Thirty health queens were submitted to ovariectomy by conventional technique or by videolaparoscopy. In order to study the intensity of inflammatory response by means of acute phase protein analysis and white blood cell count, serum samples were taken before and until 144 hours after the surgical procedures. The protein concentrations that were significantly increased 24 hours after surgical procedures were: ceruloplasmin, hemopexin, haptoglobin, and α1-acid glycoprotein, 69.8%, 103.5%, 117.3%, and 199.0%, respectively, for conventional ovariectomy; and 22.3%, 46.1%, 79.8%, and 74.6%, respectively, for laparoscopic ovariectomy. Therefore, inflammatory response was more intense in queens submitted to conventional ovariectomy. Results indicate that the increase or decrease in acute phase proteins, as well as in white blood cells count, may be useful in the evaluation of inflammatory response induced by these surgical procedures.


Peptides ◽  
1992 ◽  
pp. 879-880
Author(s):  
O. Rosen ◽  
P. Landsmann ◽  
M. Pras ◽  
D. Levartowsky ◽  
M. Pontet ◽  
...  

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 164-164
Author(s):  
junfei Guo ◽  
Hooman Derakshani ◽  
Ilkyu Yoon ◽  
Khafipour Khafipour ◽  
Jan C Plaizier

Abstract Feeding high-grain diets to dairy cows increases concentrations of acute phase proteins in peripheral blood. This inflammatory response can be reduced by supplementation with Saccharomyces cerevisiae fermentation products (SCFP). It is not clear which cytokines drive this inflammatory response, which organs are inflamed, and how these processes are affected by SCFP. The objectives of this study were to investigate if grain-induced SARA increases the concentrations of the cytokines IL-1β in peripheral blood, and of the inflammatory marker myeloperoxidase (MPO) in rumen papillae of lactating dairy cows, and if these concentrations are affected by SCFP. Thirty-two lactating Holstein dairy cows were randomly assigned to four treatment groups (n = 8) that received a TMR (34.9 %DM NDF, 18.6 %DM starch) supplemented with 1) 140 g/d of ground corn (Control), 2) 126 g/d corn and 14 g/d of Diamond V Original XPCTM (XPC), 3) 121 g/d corn and 19 g/d Diamond V NutriTek® (NTL), and 4) 102 g/d corn and 38 g/d of Diamond V NutriTek® (NTH). SARA challenges were conducted during wk 5 (SARA1) and 8 (SARA2) of lactation by replacing 20% of the base TMR with pellets containing 50% barley and 50% wheat. Blood samples were taken weekly between wk 4 (preSARA1) and wk 9 (postSARA2) for the analysis of IL-1β. Rumen papillae samples were taken during wk 3 (preSARA1) and wk 9 (postSARA2) for the measurement of MPO. SCFP treatment did not affect the concentrations of IL-1β, but the SARA challenges increased this concentration moderately from 9.0 to 12.3 pg/mL (P < 0.05). The concentration of MPO did not differ between preSARA1 and postSARA2, and these concentrations were not affected by SCFP. Results suggest that IL-1β may drive the acute phase response during the SARA challenges, and that these challenges did not cause inflammation of rumen papillae.


2016 ◽  
Vol 85 (1) ◽  
Author(s):  
Anuradha Rajamanickam ◽  
Saravanan Munisankar ◽  
Yukthi Bhootra ◽  
Chandrakumar Dolla ◽  
Thomas B. Nutman ◽  
...  

ABSTRACT Microbial translocation, characterized by elevated levels of lipopolysaccharide (LPS) and related markers, is a common occurrence in HIV and some parasitic infections. This is usually associated with extensive inflammation and immune activation. To examine the occurrence of microbial translocation and the associated inflammatory response in asymptomatic Strongyloides stercoralis infection, we measured the plasma levels of LPS and other microbial translocation markers, acute-phase proteins, inflammatory markers, and proinflammatory cytokines in individuals with (infected [INF]) or without (uninfected [UN]) S. stercoralis infections. Finally, we also measured the levels of all of these markers in INF individuals following treatment of S. stercoralis infection. We show that INF individuals exhibit significantly higher plasma levels of microbial translocation markers (LPS, soluble CD14 [sCD14], intestinal fatty acid-binding protein [iFABP], and endotoxin core IgG antibody [EndoCAb]), acute-phase proteins (α-2 macroglobulin [α-2M], C-reactive protein [CRP], haptoglobin, and serum amyloid protein A [SAA]), inflammatory markers (matrix metalloproteinase 1 [MMP-1] and heme oxygenase 1 [HO-1]), and proinflammatory cytokines (interleukin-6 [IL-6], IL-8, monocyte chemoattractant protein 1 [MCP-1], and IL-1β) than do UN individuals. INF individuals exhibit significantly decreased levels of tissue inhibitor of metalloproteinases 4 (TIMP-4). Following treatment of S. stercoralis infection, the elevated levels of microbial translocation markers, acute-phase proteins, and inflammatory markers were all diminished. Our data thus show that S. stercoralis infection is characterized by microbial translocation and accompanying increases in levels of acute-phase proteins and markers of inflammation and provide data to suggest that microbial translocation is a feature of asymptomatic S. stercoralis infection and is associated with an inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document