Breathing parameters associated to two different external nasal dilator strips in endurance athletes

2017 ◽  
Vol 44 (6) ◽  
pp. 713-718 ◽  
Author(s):  
Giancarlo Ottaviano ◽  
Andrea Ermolao ◽  
Ennio Nardello ◽  
Flavio Muci ◽  
Vittorio Favero ◽  
...  
2003 ◽  
Author(s):  
Romualdas Malinauskas ◽  
Sniras Sarunas

2012 ◽  
Vol 3 (2) ◽  
pp. 253-259
Author(s):  
Kovarova Lenka ◽  
◽  
Kovar Karel ◽  
Harbichova Ivana ◽  
Pánek David ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Jorge Gutiérrez-Hellín ◽  
Gabriel Baltazar-Martins ◽  
Millán Aguilar-Navarro ◽  
Carlos Ruiz-Moreno ◽  
Jesús Oliván ◽  
...  

The p.R577X polymorphism (rs1815739) in the ACTN3 gene causes individuals with the ACTN3 XX genotype to be deficient in functional α-actinin-3. Previous investigations have found that XX athletes are more prone to suffer non-contact muscle injuries. This investigation aimed to determine the influence of the ACTN3 R577X polymorphism in the injury epidemiology of elite endurance athletes. Using a cross-sectional experiment, the epidemiology of running-related injuries was recorded for one season in a group of 89 Spanish elite endurance runners. ACTN3 R577X genotype was obtained for each athlete using genomic DNA samples. From the study sample, 42.7% of athletes had the RR genotype, 39.3% had the RX genotype, and 18.0% had the XX genotype. A total of 96 injuries were recorded in 57 athletes. Injury incidence was higher in RR runners (3.2 injuries/1000 h of running) than in RX (2.0 injuries/1000 h) and XX (2.2 injuries/1000 h; p = 0.030) runners. RR runners had a higher proportion of injuries located in the Achilles tendon, RX runners had a higher proportion of injuries located in the knee, and XX runners had a higher proportion of injuries located in the groin (p = 0.025). The ACTN3 genotype did not affect the mode of onset, the severity, or the type of injury. The ACTN3 genotype slightly affected the injury epidemiology of elite endurance athletes with a higher injury rate in RR athletes and differences in injury location. However, elite ACTN3 XX endurance runners were not more prone to muscle-type injuries.


2012 ◽  
Vol 46 (Suppl 1) ◽  
pp. i29-i36 ◽  
Author(s):  
Keith George ◽  
Greg P Whyte ◽  
Danny J Green ◽  
David Oxborough ◽  
Rob E Shave ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Gomes da Silva Machado ◽  
Marom Bikson ◽  
Abhishek Datta ◽  
Egas Caparelli-Dáquer ◽  
Gozde Unal ◽  
...  

AbstractTranscranial direct current stimulation (tDCS) has been used aiming to boost exercise performance and inconsistent findings have been reported. One possible explanation is related to the limitations of the so-called “conventional” tDCS, which uses large rectangular electrodes, resulting in a diffuse electric field. A new tDCS technique called high-definition tDCS (HD-tDCS) has been recently developed. HD-tDCS uses small ring electrodes and produces improved focality and greater magnitude of its aftereffects. This study tested whether HD-tDCS would improve exercise performance to a greater extent than conventional tDCS. Twelve endurance athletes (29.4 ± 7.3 years; 60.15 ± 5.09 ml kg−1 min−1) were enrolled in this single-center, randomized, crossover, and sham-controlled trial. To test reliability, participants performed two time to exhaustion (TTE) tests (control conditions) on a cycle simulator with 80% of peak power until volitional exhaustion. Next, they randomly received HD-tDCS (2.4 mA), conventional (2.0 mA), or active sham tDCS (2.0 mA) over the motor cortex for 20-min before performing the TTE test. TTE, heart rate (HR), associative thoughts, peripheral (lower limbs), and whole-body ratings of perceived exertion (RPE) were recorded every minute. Outcome measures were reliable. There was no difference in TTE between HD-tDCS (853.1 ± 288.6 s), simulated conventional (827.8 ± 278.7 s), sham (794.3 ± 271.2 s), or control conditions (TTE1 = 751.1 ± 261.6 s or TTE2 = 770.8 ± 250.6 s) [F(1.95; 21.4) = 1.537; P = 0.24; η2p = 0.123]. There was no effect on peripheral or whole-body RPE and associative thoughts (P > 0.05). No serious adverse effect was reported. A single session of neither HD-tDCS nor conventional tDCS changed exercise performance and psychophysiological responses in athletes, suggesting that a ceiling effect may exist.


Sign in / Sign up

Export Citation Format

Share Document