Transient performance of air-cooled condensing heat exchanger in long-term passive cooling system under decay heat load

2017 ◽  
Vol 102 ◽  
pp. 274-279 ◽  
Author(s):  
Myoung Jun Kim ◽  
Joo Hyung Moon ◽  
Youngmin Bae ◽  
Young In Kim ◽  
Hee Joon Lee
Author(s):  
Hee Joon Lee ◽  
Han-Ok Kang ◽  
Tae-Ho Lee ◽  
Cheon-Tae Park

Recently vertical or horizontal type condensation heat exchangers are being studied for the application to secondary passive cooling system of nuclear plants. To design vertical condensation heat exchanger in water pool, a thermal sizing program of condensation heat exchanger, TSCON (Thermal Sizing of CONdenser) was developed in KAERI (Korea Atomic Energy Research Institute). In this study, condensation heat transfer correlation of TSCON is evaluated with the existing experimental data set to design condensation heat exchanger without non-condensable gas (pure steam condensation). From the investigation of the existing condensation heat transfer correlation to the existing experimental data, the improved Shah correlation showed most satisfactory results for the heat transfer coefficient and mass flow rate in a heat exchanger in both subcooled and saturated water pools without the presence of non-condensable gas.


Author(s):  
Cheng Ye ◽  
Minglu Wang ◽  
Mingguang Zheng ◽  
Zhengqin Xiong ◽  
Ronghua Zhang

Due to the safety issues arising from the Fukushima accident, a novel completely passive spent fuel pool cooling system is proposed using the high-efficiency heat pipe cooling technology that is available in an emergency condition such as a station blackout. This cooling system’s ability to remove the decay heat released by the spent fuel assemblies is evaluated by a computational fluid dynamics (CFD) simulation. The spent fuel pool of CAP1400 (a passive PWR developed in China) is selected as the reference pool, and the passive cooling system is designed for this spent fuel pool. The pool with the passive cooling system is simulated using Fluent 13.0 with 4 million meshes. Four different cases have been studied, and some notable results have been obtained through this work. The simulation results reveal that the passive cooling system effectively removes the decay heat from the SFP with the storage of 15-year-old spent fuel assemblies with emergency reactor core unloading and prevents the burnout of the fuel rods. The results indicate that the water in the SFP will never boil, even in a severe accident with a lack of emergency power and outside aid.


2015 ◽  
Vol 80 ◽  
pp. 403-408 ◽  
Author(s):  
Myoung Jun Kim ◽  
Joo Hyung Moon ◽  
Youngmin Bae ◽  
Young In Kim ◽  
Hee Joon Lee

2018 ◽  
Author(s):  
Augi Sekatia ◽  
Bangun I. R. Harsritanto ◽  
Erni Setyowati ◽  
Gagoek Hardiman

Author(s):  
Ali Deriszadeh ◽  
Filippo de Monte ◽  
Marco Villani

Abstract This study investigates the cooling performance of a passive cooling system for electric motor cooling applications. The metal-based phase change materials are used for cooling the motor and preventing its temperature rise. As compared to oil-based phase change materials, these materials have a higher melting point and thermal conductivity. The flow field and transient heat conduction are simulated using the finite volume method. The accuracy of numerical values obtained from the simulation of the phase change materials is validated. The sensitivity of the numerical results to the number of computational elements and time step value is assessed. The main goal of adopting the phase change material based passive cooling system is to maintain the operational motor temperature in the allowed range for applications with high and repetitive peak power demands such as electric vehicles by using phase change materials in cooling channels twisted around the motor. Moreover, this study investigates the effect of the phase change material container arrangement on the cooling performance of the under study cooling system.


Sign in / Sign up

Export Citation Format

Share Document