Implications of alpha-decay for long term storage of advanced heavy water reactor fuels

2017 ◽  
Vol 110 ◽  
pp. 400-405 ◽  
Author(s):  
J. Pencer ◽  
M.H. McDonald ◽  
D. Roubtsov ◽  
G.W.R. Edwards
2004 ◽  
Vol 824 ◽  
Author(s):  
Boris E. Burakov ◽  
Maria A. Yagovkina ◽  
Vladimir M. Garbuzov ◽  
Alexander A. Kitsay ◽  
Vladimir A. Zirlin

AbstractTo investigate the behavior of monazite during accelerated radiation damage, which simulates effects of long term storage, 238Pu-doped polycrystalline samples of (La,Pu)PO4 and PuPO4 were synthesized for the first time ever and studied using powder X-ray diffraction (XRD) analysis and optical microscopy. The starting precursor materials were obtained by precipitation of La and (or) Pu from their aqueous nitrate solutions followed by calcination in air at 700°C for 1 hour, cold pressing, and sintering in air at 1200-1250°C for 2 hours. The 238Pu contents in ceramic samples measured using gamma spectrometry were (in wt.% el.): 8.1 for (La,Pu)PO4 and 7.2 for PuPO4. The (La,Pu)PO4 monazite remained crystalline at ambient temperature up to a cumulative dose of 1.19 × 1025 alpha decays/m3. In contrast, the PuPO4 monazite became nearly completely amorphous at a relatively low dose of 4.2 × 1024 alpha decays/m3. Swelling and crack formation due to the alpha decay damage was observed in the PuPO4 ceramic. Also, under self-irradiation this sample completely changed color from initial deep blue to black. The (La,Pu)PO4 monazite was characterized by a similar change in color from initial light blue to gray, however, no swelling or crack formation have so far been observed. The results of this study allow us to conclude that the radiation damage behavior of monazite strictly depends on the chemical composition. The justification of monazite-based ceramics as actinide waste forms requires additional investigation.


2003 ◽  
Vol 807 ◽  
Author(s):  
Boris E. Burakov ◽  
Maria A. Yagovkina ◽  
Maria V. Zamoryanskaya ◽  
Alexander A. Kitsay ◽  
Vladimir M. Garbuzov ◽  
...  

ABSTRACTTo investigate the resistance of cubic zirconia to accelerated radiation damage, which simulates effects of long term storage, 238Pu-doped polycrystalline samples of cubic zirconia, (Zr,Gd,Pu)O2, were obtained and studied using X-ray diffraction analysis (XRD), electron probe microanalysis (EPMA), optical and scanning electron microscopy (SEM), and modified MCC-1 static leach test. The ceramic material was characterized by the following chemical composition (from EPMA in wt.% element): Zr = 50.2, Gd = 15.4, Pu = 12.2. This corresponds to the estimated formula, Zr0.79Gd0.14Pu0.07O1.99. The content of 238Pu estimated was approximately 9.9 wt.%. The XRD measurements were carried out after the following cumulative doses (in alpha decay/m3 × 1023): 3, 27, 62, 110, 134, 188, 234, and 277. Even after extremely high self-irradiation, cubic zirconia retained its crystalline structure. All XRD analyses showed no phases other than a cubic fluorite-type structure. The following results of normalized Pu mass loss (NL, in g/m2, without correction for ceramic porosity) were obtained from static leach tests (in deionized water at 90°C for 28 days) for 4 cumulative doses (in alpha decay/m3 × 1023):The results obtained confirm the high resistance of cubic zirconia to self-irradiation. This allows us to consider zirconia-based ceramic as the universal material that is suitable for actinide transmutation and geological disposal.


2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 519-523 ◽  
Author(s):  
G. M. Beattie ◽  
J. H. Crowe ◽  
A. D. Lopez ◽  
V. Cirulli ◽  
C. Ricordi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document