A unified space–time fully-transversed general nodal expansion method for multidimensional and multigroup steady and transient nuclear reactor neutronics problems

2019 ◽  
Vol 132 ◽  
pp. 427-441 ◽  
Author(s):  
Xiafeng Zhou ◽  
Changming Zhong ◽  
Jie Hou ◽  
Fu Li
2013 ◽  
Vol 448-453 ◽  
pp. 1907-1911
Author(s):  
Wei Zhi Jia ◽  
Rui Wang ◽  
Yun Zhou

As the core monitoring system of AP1000, BEACON always uses a full-core nodal model for core monitoring based on the ANC-NEM nodal model. The theory behind the nodal expansion method is discussed, and the application of the method in BEACON is described. Finally, an ANC-NEM calculation simulation is proposed.


2010 ◽  
Vol 240 (8) ◽  
pp. 1997-2004 ◽  
Author(s):  
Dengying Wang ◽  
Fu Li ◽  
Jiong Guo ◽  
Jinfeng Wei ◽  
Jingyu Zhang ◽  
...  

Author(s):  
Antonio Carlos Marques Alvim ◽  
Fernando Carvalho da Silva ◽  
Aquilino Senra Martinez

This paper deals with an alternative numerical method for calculating depletion and production chains of the main isotopes found in a pressurized water reactor. It is based on the use of the exponentiation procedure coupled to orthogonal polynomial expansion to compute the transition matrix associated with the solution of the differential equations describing isotope concentrations in the nuclear reactor. Actually, the method was implemented in an automated nuclear reactor core design system that uses a quick and accurate 3D nodal method, the Nodal Expansion Method (NEM), aiming at solving the diffusion equation describing the spatial neutron distribution in the reactor. This computational system, besides solving the diffusion equation, also solves the depletion equations governing the gradual changes in material compositions of the core due to fuel depletion. The depletion calculation is the most time-consuming aspect of the nuclear reactor design code, and has to be done in a very precise way in order to obtain a correct evaluation of the economic performance of the nuclear reactor. In this sense, the proposed method was applied to estimate the critical boron concentration at the end of the cycle. Results were compared to measured values and confirm the effectiveness of the method for practical purposes.


2018 ◽  
Vol 32 (02) ◽  
pp. 1850012 ◽  
Author(s):  
Jiangen Liu ◽  
Yufeng Zhang

This paper gives an analytical study of dynamic behavior of the exact solutions of nonlinear Korteweg–de Vries equation with space–time local fractional derivatives. By using the improved [Formula: see text]-expansion method, the explicit traveling wave solutions including periodic solutions, dark soliton solutions, soliton solutions and soliton-like solutions, are obtained for the first time. They can better help us further understand the physical phenomena and provide a strong basis. Meanwhile, some solutions are presented through 3D-graphs.


Sign in / Sign up

Export Citation Format

Share Document