Monte Carlo shielding design with a large perturbation calculation method

2020 ◽  
Vol 138 ◽  
pp. 107186
Author(s):  
Wanbin Tan ◽  
Guangyao Sun ◽  
Pengcheng Long ◽  
Bin Wu ◽  
Jing Song
Author(s):  
Ze-guang Li ◽  
Kan Wang ◽  
Gang-lin Yu

In the reactor design and analysis, there is often a need to calculate the effects caused by perturbations of temperature, components and even structure of reactors on reactivity. And in sensitivity studies, uncertainty analysis of target quantities and unclear data adjustment, perturbation calculations are also widely used. To meet the need of different types of reactors (complex, multidimensional systems), Monte Carlo perturbation methods have been developed. In this paper, several kinds of perturbation methods are investigated. Specially, differential operator sampling method and correlated tracking method are discussed in details. MCNP’s perturbation calculation capability is discussed by calculating certain problems, from which some conclusions are obtained on the capabilities of the differential operator sampling method used in the perturbation calculation model of MCNP. Also, a code using correlated tracking method has been developed to solve certain problems with cross-section changes, and the results generated by this code agree with the results generated by straightforward Monte Carlo techniques.


2017 ◽  
Vol 97 ◽  
pp. 123-132 ◽  
Author(s):  
Huseyin Sahiner ◽  
Edward T. Norris ◽  
Abdulaleem A. Bugis ◽  
Xin Liu

2018 ◽  
Vol 189 ◽  
pp. 02001
Author(s):  
Yinghong Zuo ◽  
Jinhui Zhu ◽  
Shengli Niu ◽  
Honggang Xie ◽  
Peng Shang

This study aims to get the optimization neutron shielding design of iron/polyethylene combined shield structure. The neutron transmission coefficient with various energies for different thickness of iron and polyethylene combined shield structure were calculated by using Monte Carlo method. The simulation results show that the optimization effect of iron/polyethylene combined shield is not obvious when the neutron energy is low or the shield is thin, there is an optimal thickness ratio of iron to polyethylene adopted to get the best neutron shielding performance when the energy of neutron source is above 2 MeV and the total thickness of combined shielding structure is more than 20 cm. The optimal thickness ratio of iron to polyethylene increases with the increasing energy of neutron source; with the increasing of neutron source energy ranging from 4 MeV to 14 MeV, the optimal thickness ratio of iron to polyethylene trends from 0.11 to nearly 1.6.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ze-hao Jiang ◽  
Tao Wang

In China, around ninety percent of the traffic accidents at signalized intersections occur within the signal change intervals, especially during signal change from green to red. Hence, intergreen time (IGT), that is, yellow change interval plus red clearance interval, is of great significance to the safety at signalized intersections. The conventional calculation method of IGT ignores the randomness of drivers’ behaviors, which we believe is an important factor in calculation of IGT. Therefore, the purpose of this research is to investigate a new approach to calculate the IGT based on safety reliability theory. Firstly, a comprehensive literature review concerning the conventional calculation methods of IGT is conducted. Secondly, a theoretical calculation method of IGT based on safety reliability theory is put forward; different from the conventional methods, this model accounts for the uncertainty of driving behavior parameters. Thirdly, a Monte-Carlo simulation is employed to simulate the interactive process of perception-reaction time (PRT) and vehicular deceleration and solve the proposed model. Finally, according to the Monte-Carlo simulation results, the curve clusters describing the relationship between IGT, safety reliability (50%-90%), and intersection width (15-35m) are drawn. Results show that the IGT of a signalized intersection, obeying the normal distribution, is influenced by multiple factors and most sensitive to the PRT and vehicular deceleration. Our method thus successfully incorporates the probabilistic nature of driving behavior. Taking the safety reliability into consideration can provide a more reasonable method to calculate the IGT of signalized intersections.


2011 ◽  
Vol 48-49 ◽  
pp. 224-227
Author(s):  
Dong Chen Qin ◽  
Qiang Zhu ◽  
Hong Xia Wu ◽  
Zhe Feng Guo

In order to research the motion precision reliability of hydraulic support when the influence of the bar length error and gap error is considered, the motion trace mathematical model for the top beam of hydraulic support is established, with the calculation method of motion precision reliability and the effective length of bar based on continuous contact model. Taking some type of hydraulic support as an example, its motion precision reliability is calculated and analyzed. The Monte Carlo simulation is also used to verify the model, and the T-R curve of the gap error and the reliability is plotted. The results from simulation accord with those from the theoretical calculation, which verifies the model established and can provide some valuable reference for the related future research.


Sign in / Sign up

Export Citation Format

Share Document