A study on the radial expansion reactivity of a metal-fueled sodium-cooled fast reactor via a physics experiment

2021 ◽  
Vol 153 ◽  
pp. 108072
Author(s):  
Sunghwan Yun ◽  
Gennadii Mikhailov ◽  
Sang Ji Kim ◽  
Jae-Yong Lim
Author(s):  
Satoshi Nishimura ◽  
Hirokazu Ohta ◽  
Nobuyuki Ueda

The 4S (super-safe, small and simple) reactor is a sodium-cooled small fast reactor. The core reactivity is controlled by moving the reflectors installed around the core, and the reactor has a fixed absorber at the core center to accomplish a long core lifetime. To evaluate core bowing behavior and the resulting reactivity feedback in the 4S reactor, an analytical evaluation was conducted under various core power to flow ratios (P/F). The core bowing reactivity under the BOC (beginning of core life) condition becomes increasingly negative with increasing P/F up to 2.0, then becomes less negative with increasing P/F from 2.0 to 3.0, and finally becomes positive at P/F = 3.0. The bowing reactivity under the EOC (end of core life) condition becomes increasingly negative with increasing P/F up to 1.5, then becomes less negative then positive with increasing P/F from 1.5 to 3.0; the core bowing reactivity is positive when P/F ≥ 2.0. These results are mainly caused by the following two mechanisms originating from the structural characteristics of the 4S reactor: - a decrease in neutron absorption by the fixed absorber due to the radial displacement of the inner core subassemblies (under the BOC condition); - a decrease in neutron streaming caused by the small gaps between the outer core subassemblies and the reflectors due to core radial expansion (under the EOC condition).


2009 ◽  
pp. 120-126
Author(s):  
K.V. Govindan Kutty ◽  
P.R. Vasudeva Rao ◽  
Baldev Raj

2020 ◽  
Vol 14 (3) ◽  
pp. 7235-7243
Author(s):  
N.M. Ali ◽  
F. Dzaharudin ◽  
E.A. Alias

Microbubbles have the potential to be used for diagnostic imaging and therapeutic delivery. However, the transition from microbubbles currently being used as ultrasound contrast agents to achieve its’ potentials in the biomedical field requires more in depth understanding. Of particular importance is the influence of microbubble encapsulation of a microbubble near a vessel wall on the dynamical behaviour as it stabilizes the bubble. However, many bubble studies do not consider shell encapsulation in their studies. In this work, the dynamics of an encapsulated microbubble near a boundary was studied by numerically solving the governing equations for microbubble oscillation. In order to elucidate the effects of a boundary to the non-linear microbubble oscillation the separation distances between microbubble will be varied along with the acoustic driving. The complex nonlinear vibration response was studied in terms of bifurcation diagrams and the maximum radial expansion. It was found that the increase in distance between the boundary and the encapsulated bubble will increase the oscillation amplitude. When the value of pressure amplitude increased the single bubble is more likely to exhibit the chaotic behaviour and maximum radius also increase as the inter wall-bubble distance is gradually increased. While, with higher driving frequency the maximum radial expansion decreases and suppress the chaotic behaviour.


2018 ◽  
Author(s):  
G Padmakumar ◽  
K. Velusamy ◽  
Bhamidi V. S. S. S. Prasad ◽  
P Lijukrishnan ◽  
P. Selvaraj

Kerntechnik ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. 232-236 ◽  
Author(s):  
D. L. Zhang ◽  
P. Song ◽  
S. Wang ◽  
X. Wang ◽  
J. Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document