A two-phase three-field modeling framework for heat pipe application in nuclear reactors

2022 ◽  
Vol 165 ◽  
pp. 108770
Author(s):  
Shanbin Shi ◽  
Yang Liu ◽  
Ilyas Yilgor ◽  
Piyush Sabharwall
Author(s):  
A. Lipchitz ◽  
Lilian Laurent ◽  
G. D. Harvel

Several Generation IV nuclear reactors, such as sodium fast reactors and lead-bismuth fast reactors, use liquid metal as a coolant. In order to better understand and improve the thermal hydraulics of liquid metal cooled GEN IV nuclear reactors liquid metal flow needs to be studied in experimental circulation loops. Experimental circulation loops are often located in a laboratory setting. However, studying liquid metal two phase flow in laboratory settings can be difficult due to the high temperatures and safety hazards involved with traditional liquid metals such as sodium and lead-bismuth. One solution is to use a low melt metal alloy that is as benign as reasonably achievable. Field’s metal is a eutectic alloy of 51% Indium, 32.5% Bismuth and 16.5% Tin by weight and has a melting point of 335K making it ideal for use in a laboratory setting. A study is undertaken to determine its suitability to use in a two-phase experimental flow loop enhanced by magnetohydrodynamic forces. The study investigated its reactivity with air and water, its ability to be influenced by magnetic fields, its ability to flow, and its ease of manufacture. The experiments melted reference samples of Field’s metal and observed its behaviour in a glass beaker, submerged in water and an inclined stainless steel pipe. Then Field’s metal was manufactured in the laboratory and compared to the sample using the same set of experiments and standards. To determine Field’s metal degree of magnetism permanent neodymium magnets were used. Their strength was determined using a Gaussmeter. All experiments were recorded using a COHU digital camera. Image analysis was then performed on the video to determine any movements initiated by the magnetic field forces. In conclusion, Field’s metal is more than suitable for use in experimental settings as it is non-reactive, non-toxic, simple to manufacture, easy to use, and responds to a magnetic force.


2007 ◽  
Vol 18 (04) ◽  
pp. 536-545 ◽  
Author(s):  
NAOKI TAKADA ◽  
AKIO TOMIYAMA

For interface-tracking simulation of two-phase flows in various micro-fluidics devices, we examined the applicability of two versions of computational fluid dynamics method, NS-PFM, combining Navier-Stokes equations with phase-field modeling for interface based on the van der Waals-Cahn-Hilliard free-energy theory. Through the numerical simulations, the following major findings were obtained: (1) The first version of NS-PFM gives good predictions of interfacial shapes and motions in an incompressible, isothermal two-phase fluid with high density ratio on solid surface with heterogeneous wettability. (2) The second version successfully captures liquid-vapor motions with heat and mass transfer across interfaces in phase change of a non-ideal fluid around the critical point.


Sign in / Sign up

Export Citation Format

Share Document