scholarly journals Analysis of surface temperature bias over the Tibetan plateau in the CAS FGOALS-f3-L model

Author(s):  
Yao Wu ◽  
Yimin Liu ◽  
Jiandong Li ◽  
Qing Bao ◽  
Bian He ◽  
...  
2014 ◽  
Vol 119 (14) ◽  
pp. 8552-8567 ◽  
Author(s):  
Guoqing Zhang ◽  
Tandong Yao ◽  
Hongjie Xie ◽  
Jun Qin ◽  
Qinghua Ye ◽  
...  

2006 ◽  
Vol 19 (12) ◽  
pp. 2995-3003 ◽  
Author(s):  
Yuichiro Oku ◽  
Hirohiko Ishikawa ◽  
Shigenori Haginoya ◽  
Yaoming Ma

Abstract The diurnal, seasonal, and interannual variations in land surface temperature (LST) on the Tibetan Plateau from 1996 to 2002 are analyzed using the hourly LST dataset obtained by Japanese Geostationary Meteorological Satellite 5 (GMS-5) observations. Comparing LST retrieved from GMS-5 with independent precipitation amount data demonstrates the consistent and complementary relationship between them. The results indicate an increase in the LST over this period. The daily minimum has risen faster than the daily maximum, resulting in a narrowing of the diurnal range of LST. This is in agreement with the observed trends in both global and plateau near-surface air temperature. Since the near-surface air temperature is mainly controlled by LST, this result ensures a warming trend in near-surface air temperature.


2020 ◽  
Author(s):  
Yuting Wu ◽  
Xiaoming Hu ◽  
Ziqian Wang ◽  
Zhenning Li ◽  
Song Yang

<p>The surface temperature cold bias over the Tibetan Plateau (TP) is a long-lasting problem in both reanalysis data and climate models. While previous studies have mainly focused on local processes for this bias, the TP surface temperature is also closely related to tropical SST in both observations and Coupled Model Inter-comparison Project (CMIP5) models. This study investigates the role of tropical SST climatological bias in the TP surface temperature cold bias, and analysis of CMIP5 models suggests that the surface temperature cold bias over the TP is more obvious (about 4 K) in winter, with an east-west distribution pattern, than in summer (about 1 K), with a south-north distribution pattern. Considering that the tropical SST bias in CMIP5 models may be an important source of the TP surface temperature cold bias, a series of model experiments were conducted by the NCAR CAM4 to test the hypothesis. Model experiment results show that the tropical SST bias can reproduce cold bias over the TP, with 2 K in winter and about 0.5 K in summer. The mechanisms for TP surface temperature cold bias are different in winter and summer. In winter, tropical SST bias influences the TP surface temperature mainly by anomalous snow cover, while anomalous precipitation and clouds are more important for the temperature bias in summer.</p>


Sensors ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 376 ◽  
Author(s):  
Yuanyuan Hu ◽  
Lei Zhong ◽  
Yaoming Ma ◽  
Mijun Zou ◽  
Kepiao Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document