scholarly journals Investigation of the acoustic installation effects of an open-jet anechoic wind tunnel using computational aeroacoustics

2020 ◽  
Vol 169 ◽  
pp. 107469
Author(s):  
S. Redonnet
2018 ◽  
Vol 90 (1) ◽  
pp. 126-133 ◽  
Author(s):  
Hasan Kamliya Jawahar ◽  
Yujing Lin ◽  
Mark Savill

Purpose The purpose of this paper is to investigate airfoil self-noise generation and propagation by using a hybrid method based on the large-eddy simulation (LES) approach and Curle’s acoustic analogy as implemented in OpenFOAM. Design/methodology/approach Large-eddy simulation of near-field flow over a NACA6512-63 airfoil at zero angle of attack with a boundary layer trip at Rec = 1.9 × 105 has been carried out using the OpenFOAM® computational fluid dynamics (CFD) code. Calculated flow results are compared with published experimental data. The LES includes the wind tunnel installation effects by using appropriate inflow boundary conditions obtained from a RANS κ – ω SST model computation of the whole wind tunnel domain. Far-field noise prediction was achieved by an integral method based on Curle’s acoustic analogy. The predicted sound pressure levels are validated against the experimental data at various frequency ranges. Findings The numerical results presented in this paper show that the flow features around a NACA6512-63 airfoil have been correctly captured in OpenFOAM LES calculations. The mean surface pressure distributions and the local pressure peaks for the step trip setup agree very well with the experimental measurements. Aeroacoustic prediction using Curle’s analogy shows an overall agreement with the experimental data. The sound pressure level-frequency spectral analysis produces very similar data at low to medium frequency, whereas the experimentally observed levels are slightly over predicted at a higher frequency range. Practical implications This study has achieved and evaluated an alternative aeroacoustic simulation method based on the combination of LES with a simple Smagorinsky SGS model and Curle’s analogy, as implemented in the OpenFOAM CFD code. The unsteady velocity/pressure source data produced can be used for any simpler analytically based far-field noise prediction scheme. Originality/value A complete integration of the LES and Curle’s acoustic analogy for aeroacoustic simulations has been achieved in OpenFOAM. The capability and accuracy of the hybrid method are fully evaluated for high-camber airfoil self-noise predictions. Wind tunnel installation effects have been incorporated properly into the LES.


AIAA Journal ◽  
2010 ◽  
Vol 48 (5) ◽  
pp. 929-937 ◽  
Author(s):  
S. Redonnet ◽  
G. Desquesnes ◽  
E. Manoha ◽  
C. Parzani

2021 ◽  
Vol 11 (20) ◽  
pp. 9718
Author(s):  
Stéphane Redonnet

This study focuses on the acoustic installation effects that may occur during typical aeroacoustic experiments when the latter are conducted in a closed-vein wind tunnel. More precisely, in regard to the specific problem of airfoil trailing edge noise, an analytical model is derived, which allows predicting the wall-induced reverberation effects that such a noise shall be subjected to, when radiating within a closed-vein, hard-wall, wind tunnel. These effects are then assessed through a parametric investigation so as to characterize their impact on in situ acoustic measurements that would be performed using flush-mounted microphones located on the vein’s walls. From a phenomenological perspective, the study highlights how important the reverberation effects by the vein can be. In particular, results reveal how their impact on the noise measurements may greatly vary, depending on the trailing edge noise source location (i.e., the airfoil incidence) and, to a lesser extent, its frequency. The outcomes allow identifying these locations where the installation effects are least, i.e., where to better position a flush-mounted microphone, should in situ noise measurements be conducted. From a methodological viewpoint, the study showcases how the proposed formalism could constitute a simple albeit useful diagnosis tool for mitigating the experimental biases weighing on airfoil trailing edge noise tests to be conducted within closed-vein facilities, whether this would be done a priori by flush-mounting the microphone(s) where these biases are minimal or a posteriori by de-biasing the noise measurements accordingly.


Sign in / Sign up

Export Citation Format

Share Document