Experimental and computational investigation of the effect of blade sweep on acoustic characteristics of axial fan

2022 ◽  
Vol 189 ◽  
pp. 108613
Author(s):  
Minjun Park ◽  
Duck-Joo Lee ◽  
Hakjin Lee
2010 ◽  
Vol 58 (3) ◽  
pp. 223 ◽  
Author(s):  
Gregor Alič ◽  
Brane Širok ◽  
Marko Hočevar

2017 ◽  
Vol 16 (4-5) ◽  
pp. 418-430 ◽  
Author(s):  
Gert Herold ◽  
Florian Zenger ◽  
Ennes Sarradj

Microphone arrays can be used to detect sound sources on rotating machinery. For this study, experiments with three different axial fans, featuring backward-skewed, unskewed, and forward-skewed blades, were conducted in a standardized fan test chamber. The measured data are processed using the virtual rotating array method. Subsequent application of beamforming and deconvolution in the frequency domain allows the localization and quantification of separate sources, as appear at different regions on the blades. Evaluating broadband spectra of the leading and trailing edges of the blades, phenomena governing the acoustic characteristics of the fans at different operating points are identified. This enables a detailed discussion of the influence of the blade design on the radiated noise.


Author(s):  
Anton Rossikhin ◽  
Iaroslav Druzhinin ◽  
Iurii Khaletskii ◽  
Victor Mileshin

A computational investigation of acoustic characteristics of model ducted counter-rotating fan COBRA-1 with ultra-high bypass ratio BPR = 20, developed in CIAM in the framework of European Project COBRA (Innovative Counter rOtating fan system for high Bypass Ratio Aircraft engine), is presented in the paper. Calculations of acoustic characteristics of the fan were performed at five operational conditions. For three of them the sums of rotation frequencies of rotors corresponded to those expected for approach conditions, and they differed from each other by relations between frequencies of rotors, and for other two the sums of rotation frequencies corresponded to cutback and sideline operational conditions. Numerical investigations were conducted using the method of 3D numerical calculation of interaction between fan rows implemented in 3DAS (3 Dimensional Acoustics Solver) CIAM in-house solver. The data were compared with the results of the experiments conducted in the CIAM test rig C-3A. The results of comparison show satisfactory qualitative and, in some positions of microphones, quantitative agreement between the results of the simulation and the experiment. Both results demonstrate strong influence of relation between rotation frequencies of rotors on acoustic characteristics and significant dominance of noise radiated from the nozzle over the noise radiated from the inlet.


Author(s):  
Billy Irwin

Abstract Purpose: This article discusses impaired prosody production subsequent to traumatic brain injury (TBI). Prosody may affect naturalness and intelligibility of speech significantly, often for the long term, and TBI may result in a variety of impairments. Method: Intonation, rate, and stress production are discussed in terms of the perceptual, physiological, and acoustic characteristics associated with TBI. Results and Conclusions: All aspects of prosodic production are susceptible to the effects of damage resulting from TBI. There are commonly associated prosodic impairments; however, individual variations in specific aspects of prosody require detailed analysis.


Sign in / Sign up

Export Citation Format

Share Document